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1. Executive Summary 
 
Fires cause massive environmental damage. This damage can be in the form of physical 
damages but also the monetary value of all the structures and items it destroys. Timely 
response to a fire is key as the sooner a team can be assembled to fight the fire the less 
damage that occurs. The F.I.R.E. system’s goal is to detect fires and send alerts about 
the fire across large distances so that response teams can be brought together swiftly. 
This allows cities, states, and governments to effectively and efficiently monitor forests 
and large expanses of land for fires and alert a location that could be many miles away 
from the starting point of the fire. The system uses new wireless technology combined 
with machine learning and image processing techniques to determine if there is a fire in 
its vicinity and send an alert across the network. Creating a mesh network, the system 
will send alerts to all other systems and these notifications will get filtered through the 
system to a central location so that the alert can be handled. Using newer wireless 
technology LoRa and the power of machine learning, the system will accurately and 
efficiently monitor these large areas and assist in preventing the devastation caused by 
a fire. 

 

2. Product Description 
 
The following sections cover items relating to the product. The motivation, goals, and 
objectives preface everything as the project must fall back on them to complete its goal. 
Furthermore, this section covers the Requirements for the system and the “House of 
Quality” which helps product development by showing the relationship between customer 
requirements and design requirements. 
 

2.1. Motivation 
 
Over 100,000 forest fires have occurred worldwide. In the past, forest fires were 
considered a natural cycle and were ignored [1, 2]. However, with increasing awareness 
emphasizing the preservation of natural resources, as well as recent forest fires, have put 
forest fires at the forefront of global environmental concerns especially due to the fires 
Australia in 2001 and 2002 and USA in 2002 [2]. Forest fires not only increase the levels 
of carbon dioxide in the atmosphere, but also burn vegetation and plants that act as 
nature’s CO2 sinks. 
 
The increased carbon dioxide impacts air quality leading to smog and escalates the rate 
of global warming [3, 4]. In addition, humans and endangered animals’ fatalities have 
been reported due to forest fires. As a result, forest fire detection and monitoring systems 
have sparked the interests of scientists and researchers worldwide. 
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In this paper a prototype forest fire detection and monitoring system is proposed as a 
solution. The purpose of this project is to design and build a solar powered forest fire 
detection and monitoring system that will serve as a preventive measure for forest fires. 
This device would ideally be used in areas where human activity is present such as 
campsites especially parts of the forest that are highly susceptible to forest fires. This 
device can also be used to monitor and detect forest fires to help researchers and 
firefighters determine incoming fires or the severity of the existing fires. Thus, the device 
is aimed for prevention and to facilitate extinction of forest fires. 

 

2.2. Goals and Objectives 
 
The main goal for this project is to design a system composed of devices whose main 
purpose is detecting and monitoring the environment for forest fires. The devices are 
portable so that it can be mounted on trees and can communicate and send data to the 
main hub where a forest ranger can monitor forest conditions. Moreover, the system can 
be calibrated to work under various forest environments.  

 
Hardware: The hardware of the system includes a solar panel system, power regulation 
system, sensors for flame, smoke, and gas detection, antenna and radio frequency 
hardware, and processor for network and sensor data.  
 
Software: There are two parts to the software of the system: Network and Fire Detection. 
The Network software manages and maintains the mesh network and allows for sending 
messages through the network to a “root node”. The Fire Detection software uses sensor 
data to determine, through image processing and machine learning, if there is a fire. The 
two software sub-systems communicate with each other so a message can be sent 
through the network. 
 
Control: To process and control the data, the system includes a low power 
microcontroller and a Raspberry Pi that work together to achieve the goals of the system. 
The microcontroller handles the wireless communication and joining and maintaining the 
mesh network. The Raspberry Pi handles sensor data and determines if there is a need 
to send a message across the network. 
 
Communication: A mesh network was created for the project to allow the devices to be 
scattered in a forest to communicate dynamically and send data to be processed at the 
root node.   
 
Power Supply: The system is powered by solar panels mounted to the top of the tree or 
device. Since each device will draw modest current, the solar system is capable of 
supplying power and allowing the devices to function autonomously without significant 
human intervention.  
 

2.3. Requirements and Specifications 
 



3 

 

Table 1 and Table 2 below show the requirements and constraints as determined by the 
project specification. Some ID numbers are maintained from old revisions, therefore some 
of the numbers are missing in this table. The requirements and constraints shown here 
are that of the final product. 

 
Table 1: Project Requirements 

 
Table 2: Project Constraints 

ID Category Requirement 

C1 Electrical The system shall use solar power when available instead of 
the battery 

C2 Mechanical The system shall not be bigger than a bird’s nest. 

C3 Mechanical The system shall be mounted to a tree 

2.4 House of Quality 
 
The house of quality is a product planning matrix that shows how customer requirements 
relate to engineering requirements [5]. The House of Quality is mostly used to identify the 
customer’s needs and improving the development engineers’ understanding of the 
customer’s intentions. By creating an understanding between the customer and the 
engineers who develop the product, the product is designed correctly and efficiently while 
maintaining the original “market” requirements that got the project started in the first place. 
Figure 1 below is the “House of Quality” for this project. 
 

ID Category Requirement 

R1 System The system shall detect the presence of a fire within 100m 

R2 Electrical The system shall be able to draw power from a battery or 
solar panel at any time 

R3 Electrical The system shall charge a battery with solar panel 

R4 Electrical The system battery shall last 36 hours without charging 

R5 Electrical The system shall communicate wirelessly to nearby nodes 

R6 Software The system shall differentiate other nodes and determine 
how to send data to the root node 

R7 Software The system shall read all sensors periodically and store 
data internally 

R8 Software The system shall process all sensor data to determine if a 
fire has started 

R11 Software The system shall store configuration and user defined data 
in non-volatile memory 

R15 System Average installation time should not exceed 30 minutes 

R17 Electrical The system shall verify environment with temperature and 
humidity sensors 
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Figure  1: House of Quality 

This House of Quality has four major relationships displayed. These four relationships are 
the cornerstone to the design. The most obvious relationship is the connection between 
the Cost of the product and the cost to design the product. If it costs more money to 
design the project, then it will cost more money for a consumer to buy it. The next 
relationship is directly between reliability and cost. As the reliability increases, it stands to 
reason that the cost will also increase. This may be due to purchasing better materials or 
adding in additional components or modules to improve the reliability in the design. The 
next relationship that matters greatly to the overall project is the inverse relationship of 
battery life and power usage which is directly related to design time. If the time to design 
this project is increased, it is likely that we will discover more efficient and better 
techniques to save on power consumption. Lower power consumption will increase 
battery life. This relationship is important because it shows that with enough time, we can 
make a very efficient product. Other relationships exist on the House of Quality, but they 
are less “powerful” correlations than the four previously mentioned. During the design and 
implementation of the final project special care was given to make sure that too much 
time was not spent on different design elements, but the more time spent definitely 
improved the reliability and ease of use of the product in the long run. 
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3. Design Constraints and Standards 
 
Design Constraints and Standards are important to every project as they define how this 
project relates to the world around it. When a project follows a standard, others can define 
how the product behaves or is designed based on what kind of standard is followed. 
Furthermore, a product might be approved or denied in certain markets based on which 
standards it conforms to. Nonetheless, this section covers the constraints and standards 
that this project is designed to. 
 

3.1. Table of Standards 
 
The table below shows standards that could be applicable to the project and what part of 
the project would follow those standards. Regulations that could apply (i.e. from the FCC) 
will also be listed in this table. 
 
Table 3: Table of Standards and Regulations 

Standard or Regulation Application Where it applies 

RoHS – Directive 
2002/95/EC 

Restriction of using hazardous 
materials 

Entire Project 

IEEE C2-2012 Safeguarding persons from 
hazards during installation 

Entire Project – 
Mechanical Housing 

IPC-2220 (IPC-2221) Series of standards built around 
IPC-2221. Related to PCB design. 

Electrical PCBs 

IEEE 802.11ah Amendment to IEEE802.11. Wi-Fi 
HaLow.  

Research 
Considerations 

47 CFR 18 and 47 CFR 
15  

Wireless communications and 
ISM band 

Using the 900MHz 
bands for wireless 
communications 

IEEE 802.15.4 and .5 WPAN and Mesh Networking 
standards + Chirp Spread 
Spectrum 

Research and 
Design 
Considerations 

UL 2054 Safety requirements and tests for 
batteries 

Batteries  

 
 
 

3.2. Other Safety Concerns 
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The following section discusses what kind of safety concerns in the design of the project. 
The project uses electricity meaning that there are some important considerations that 
must be made. 
 

3.2.1. RoHS 
 
Some materials are hazardous and harmful to the environment. To mitigate effects on the 
environment, this project is RoHS compliant to the best of our ability. This means that the 
components chosen for the project had no lead, mercury, cadmium, hexavalent 
chromium, polybrominated biphenyls, polybrominated diphenyl ethers, and some 
phthalates [6].  
 

3.2.2. Battery Safety 
 
Battery monitoring is an important aspect for this project as most battery types available, 
due to sizing constraints, are prone to self-ignition which would ultimately defeat the 
purpose of this project. The final revision of the project relies on a smart charging IC that 
manages the batteries and charges them based on battery health and voltage. The IC 
monitors the charge current and battery voltage and controls the charging process 
accordingly. 

 
Since Li-Ion batteries are being used in this project it was important to understand their 
thermal limitations. Li-Ion has an issue with thermal runaway which is when a battery 
reaches a certain temperature and crosses a threshold that will cause the battery to 
rapidly rise in temperature. The battery will ultimately fail and catch fire and due to the 
chemical makeup of the battery the fire cannot be extinguished easily and normally burns 
until the fuel source, the chemicals and metals in the battery, burns out. 
 

3.2.3. Electrical Safety 
 
The system shall take advice from IEEE C2-2012 for Information Technology Safety and 
will also follow guidelines of IPC-2220 Generic Standard on Printed Board Design [7, 8]. 
 

4. Research and Background Information 
 
The following sections discuss the research into this project idea. The project itself 
contains many different technologies and designs independently from each other. To 
make sure everything works together, research was completed to understand each part 
of the project before going into detail and designing the final system. 
 

4.1. Current Fire Detection Systems 
 
The first step was to look into current fire detection systems. These systems are based 
on a variety of technologies. Some of these technologies will be used by us as well but 
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some will be skipped over if they are not pertinent to our design goals. The following 
subsections discuss the products used in the industry today or that have been designed 
before as well as similar projects using an Arduino. Each of these projects have different 
costs and requirements associated. By understanding what sets these systems apart 
from each other, good designs can be created that meet our needs. 
 

4.1.1. Products Used in the Industry 
 
Current forest fire detection and monitoring systems use video cameras to recognize 
smoke spectrum, thermal cameras to detect heat glow, IR spectrometers, and LIDAR 
(detection of light and range) to detect smoke particles using reflected laser [9]. These 
systems are costly due to the nature of the technology. Our objective is to design a system 
that can accomplish its goal while driving cost down significantly through careful electronic 
design and component selection.  

 
The following forest fire detection and monitoring systems exist in the market [9]:  
 
1. AlarmEYE:  

a. Video and infrared system using black and white color frequency. 
2. EYEfi SPARC:  

a. Optical sensors that includes camera, light sensors, communication, weather, 
power system, option for tilt zoom camera. 

b. Does not include smoke detection 
3. UraFire: 

a. Smoke detection system focused on “clustering motions and a time input” 
4. Forest Fire Finder: 

a. Analyzes how atmosphere absorbs light and differentiates absorption behavior 
b. Can detect smoke in a range of 15km 

5. ForestWatch:  
a. Sensor camera mounted on a tower using a using a 360° pan tilt camera that scans 

the forest in a range of 16-20km for smoke in the daytime and flame at night. 
6. FireWatch:  

a. Optical sensor system that scans the forest using a 360° camera with a central 
office for monitoring and data processing.  

7. FireHawk:  
a. Cameras stationed strategically in the forest, the system uses GIS mapping and 

ForestWatch software to calculate the shortest distance to the fire. 
 
 

4.1.2. Similar Project 
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The Arduino fire alarm system using temperature and smoke sensor with Android 
connectivity is a product that exits in the market for $5,900 USD and serves a similar 
purpose to the final product aimed to design [10]. 
A major drawback of this kit is the high market value price despite the product using 

straightforward components. This price can be attributed to the fire-proof enclosure, which 
typically raises the cost of the system. Moreover, the product uses Bluetooth technology 
to communicate an alert through a mobile app. Bluetooth technology can range from 30m 
to 100m, which could function in an indoor environment but is not ideal for an outdoor 
environment that is intended [11]. Moreover, it is not clear if this product will communicate 
with other fire systems around it, such as in a mesh network. 
 
However, this product contains many of the features intended to use for this project and 
the strategic placement of parts will be useful when designing the printed circuit board for 
this project. The temperature sensor, smoke sensor, and microcontroller are components 
that would be implemented in this project. Thus, our achieved a similar objective to the 
Arduino system; however, most importantly the cost is significantly lower with wider range 
and similar fire detection technologies.  
 
 

4.2. Background Research 
 
After looking at systems that already exist to detect fires, an investigation on other kinds 
of technologies that the project will use. Without an understanding of these individual 
parts, the system will not function properly. In this section, a narrower view is taken such 

Figure  2: Arduino Uno being used in a similar project [10] 
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that individual components, sensors, and protocols are examined for their efficacy in the 
project. 
 

4.2.1. Serial Communication Protocols 
 
Serial communication is dependent on the type of microcontroller used and the 
communication protocol of the chosen sensors. Based on the research, the likely 
protocols to be used for this project will be SPI or I2C.  
 
SPI or Serial Peripheral Interface requires a 4-wire connection: a clock signal (SCLK), a 
slave select signal (SSn), Master Out Slave In (MOSI), Master In Slave Out (MISO) [12]. 
SPI uses a protocol where a single device sends the communication to the slave devices, 
thus it uses the single-master communication protocol [12]. In order for communication to 
occur, the master and slave must use SCLK frequency, CPOL, and CPHA [12]. In the 
event when multiple slaves exist, the master will reconfigure itself each time to initiate the 
communication with each slave [12]. SPI does not have a maximum data rate, nor does 
it use a specific addressing structure. In addition, SPI does not have a system to 
acknowledge that the device received data or options to control the flow of data [12]. 
Therefore, if SPI is used in command type applications, an additional structure would 
need to be incorporated.  
 
The physical interface of SPI is flexible in the sense that many variants currently use a 
continuous clock signal and random lengths compared to past types that were non-
continuous clocks and used a single byte scheme.  
 

 
Figure  3: SPI Topology [12] 
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I2C or Inter-integrated circuit is known for requiring a 2-wire connection between the 
peripherals and the microcontroller [12]. The two signals are called serial data (SDA) and 
serial clock (SCL) [12]. I2C allows multiple slaves and masters to be connected and 
communicate (bi-directionally) between the two lines using a protocol that includes 7-bit 
slave addresses and data divided into 8-bit bytes [12]. The bus master is the IC that 
initiates the data transfer, while the remaining IC are considered bus slaves [12]. The data 
rate should be between 100kb/s, 400kb/s and 3.4 Mb/s for standard mode, fast mode, 
and high-speed mode, respectively [12]. There some variants of I2C that include a low 
speed mode at 1kb/s and fast mode + at 1Mb/s [12]. 
 

 
Figure  4: I2C Topology 

The physical interface of I2C is compose d of SCL and SDA lines as open drain I/Os with 
pull-up resistors; while grounded it is a logic zero and while released is a logic one [12]. 
Due to the physical structure of I2C, communication can occur without conflict even if 
multiple two devices are continuously sending information on the SDA and SCL lines; 
there is no electrical interruption due to the open-drain and pull-up setup.  This is 
illustrated in Figure 5 [12]. 
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Figure  5: Timing Diagram of I2C [12] 

I2C has several advantages over SPI. Firstly, since I2C only uses 2-line connections, this 
allows easier implementation since less pins are required. Moreover, I2C allows for 
smooth communication with is advance feature of resolving multi-master communication 
conflicts on a simple physical structure [12]. I2C’s setbacks in comparison with SPI is with 
data rate; SPI is a full-duplex which means simultaneous communication is possible. 
Moreover, SPI does not define a speed limit for transmitting data [12].  
 
After examining both protocols, I2C is the ideal communication protocol between the 
microcontroller and the sensors; however, SPI is not completely ruled out. The 
advantages I2C provides helps achieve the purpose of the project in a straightforward 
manner.  
 

4.2.2. Sensors 
4.2.2.1. Gas Sensors 
 
When reviewing gas sensor types, the important parameters to consider are sensitivity 
and selectivity. Additional parameters to consider are response time, stability, 
reversibility, energy consumption, fabrication cost, and adsorptive capacity according to 
IEEE fellow researchers investigating fire sensing technologies [13]. Gas sensors detect 
gases by observing for variation in the sensor output, which typically is an analog value; 
however, some gas sensors send a digital signal out.  
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Table 4: Gas Measurements in the Atmosphere During a Fire [14] 

 
Sensors vary by the material used; existing materials in the market include 
semiconductor, catalytic bead, photoionization, infrared, and electrochemical. Additional 
gas sensor types include optical, acoustic, gas chromatograph, and calorimetric [13].  
 
In the event of a fire, the air quality changes; the severity depends on the severity of the 
fire and the environmental conditions. Forest fires tend to release high levels of N2, O2, 

CO, CO2, H2 gasses [13]. Changes in oxygen levels can provide indication of the type of 
fire. A low change in concentration suggests a smoldering fire while large changes 
suggest liquid fuel fires that rapidly burning fires [13]. 
 
Gas sensors made with semiconductor metal oxide are an ideal choice of materials 
however they come with disadvantages namely with stability issues that lead to false 
alarms [13]. However, despite this issue, zeolites have been used instead of metal oxides 
to compensate for this issue [13]. Moreover, gas sensors that use polymers have shown 
to enhance sensitivity [13].  
 
Based on spectroscopy laws, gas sensors that use optical methods are more stable, 
sensitive, possess better selectivity, and have a low response time [13]. However, optical 
gas sensors come with the disadvantage of higher costs [13]. 
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A novel method of gas detection uses acoustic waves by detecting the change in velocity 
of the wave due to adjusting a parameter of the sensor’s material, for example the mass 
[13]. A laser beam is shined through the gas. The gas molecules absorb the beam and 
releases the beam’s energy resulting in an acoustic wave which is detected using an 
acoustic sensor. The magnitude of the wave is used to identify the concentration of the 
gas in the atmosphere. The figure below provides a depiction of how this is achieved. 

Figure  6: Acoustic gas detection method [13] 

 
Other methods of gas detection use a combination of sensors to detect temperature and 
humidity and an algorithm to detect gases such as CO and CO2 [13]. These gas sensors 
use metal oxide or n-LTPS MOS Schottky diode on a glass substrate [13]. SnO2 provides 
the highest quality in terms of sensitivity ratio; this was used for gas sensor to detect 
gasses emitted during fires by detecting the smells from cotton and the printed circuit 
board when it is heated at 200 degree Celsius [13]. This is achieved by measuring the 
change in resistance of the parts due to gas emission. 
 

4.2.2.2. Smoke Sensors 
 
Understanding smoke characteristics and causes helps understand how smoke sensors 
function in order to choose an appropriate smoke sensor for forest fire applications. 
Smoke is produced when a fire is burning and materials are combusted; it is composed 
of airborne solid, liquid particulates, and gases, which deems it an unwanted element in 
the atmosphere since it reduces the air quality in the environment.  
 
Smoke detection uses two techniques to detect its presence: non-visual and visual [13]. 
In a non-visual method, the detection technique looks smoke combustion conditions such 
as pyrolysis, smoldering, and flaming; these conditions are contingent on the type of fire 
and the environmental surrounding [13].  
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Smoke detection methods that use the photoelectric principle are primarily used for 
smoldering conditions and is effective in doing so; response times are quick [13]. In this 
method, the ionization smoke sensor measures smoke relative to the ionization levels in 
the air [13]. A potential difference is applied through a chamber and the output current is 
measured as a result [13]. Moreover, photoelectric method dictates that the concentration 
of smoke in the air will proportionally increase the light scattering capacity [13]. Thus, this 
method measures the variation in light scattered using optical science and technology to 
detect the smoke levels in each area. It is also common to combine this method with gas 
sensing technology for better results.  
 
Other smoke detectors use alpha particles to the gate of a MOSFET which induces a 
positive charge [13]. When the smoke concentrations are high, smoke particles decrease 
the number of alpha particles in the gate terminal which then reduces the current [13]. 
Other photoelectrical methods investigated the range of transmission for wood smoke 
using a white polychromatic LED, an optical fiber, pyrex glass window, and photodiodes 
[13]. This could be implemented in a forest environment. The figure below provides a 
visual of how photoelectrical smoke sensors works. 
 

Figure  7: Visual representation of photoelectric smoke detection [13] 

Visual techniques mostly use cameras which can detect both flame and smoke [13]. The 
nature of smoke is that it exists at the beginning of the fire which is crucial when designing 
fire-detection strategies. Smoke detection uses color space, specifically RGB or YUV. 
With RGB, pixel rules must be used; however, with YUV, the rules are dictated by looking 
at chrominance and luminance values [13]. To overcome false alarms, luminance 
mapping is used paired with support vector machines (SVM) algorithm, and Bayesian 
network algorithm. Other techniques to detect smoke use Adaboost with staircase 
searching [13]. 
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Yet, detecting smoke at the early stage can be difficult when comparing it flame detection; 
it is very common for smoke and flame characteristics to be used when creating 
algorithms. However, smoke direction can be detected using cameras and various 
algorithms.  

 

4.2.2.3. Flame Sensors 
 
In order to understand flame detection to choose a suitable sensor, it is important to 
understand the nature and characteristics of a flame. Flame is a visible exothermic 
reaction that occurs in a fire due to fuel and oxidants interacting, thus flames emit radiation 
and chromatic properties. Flame temperature is dependent on the material that is burning.  

 
There are two methods of flame detection: non-visual and visual flame techniques [13]. 
Non-visual flame sensors use ultra-violet, visible, and infrared rays [13]. This is because 
flames emit a radiation whose intensity is determined by the flame temperature and the 
type of fuel burning [13]. An ultra-violet sensor is used to measure the brightness since 
UV sensors are not impacted by interreferences from other radiations such as infrared 
[13]. Additionally, infrared and visible light sensors are used to measure flame. However, 
IR and visible light sensors are more effective than ultra-violet sensors [13]. UV sensors 
tend give out more false positive alerts due UV sensors emitting sparks of UV spectra 
that essential interferes with the signal [13]. To overcome this effect, a near infrared 
photodetector (NIR) can be used for flame detection. NIRs are made of Pb semiconductor 
using Colloidal Quantum Dots (CQD) technique [13]. 
 
Visual techniques for detecting flame can be difficult because standard heat, smoke 
flame, and gas sensors can delay in receiving a response [13]. This is because the 
particles must reach the sensors in order for the sensor to trigger a response signal [13]. 
Moreover, the range of detection tends to have a small radius. As a result, this issue is 
typically resolved by installing many sensors to cover a large area [13]. Moreover, the 
nature of fires come with various characteristics such as shape, size, color, location, 
growth, degree of burning, and dynamic texture and typical sensors are not capable of 
measuring each of these characteristics and their parameters accurately [13]. Thus, flame 
sensors that depend on these techniques give false alarms whose validity can only be 
evaluated by an experienced individual.  
 
A device to solve this issue is using a camera that can capture images of fire and analyze 
them accordingly to establish fire detection. Such cameras tend to be very high cost; thus, 
it is more common to see surveillance cameras being used instead. IR cameras have 
been used for flame detection by using the Markov model to detect flame flicker [13]. The 
figure below is a flow chart that explains how this works. 
 
Once a camera records data and provides it in the RAW, RGB, YUV, JPEG formats, 
algorithms can be used to examine the images and deduce if the image frame has the 
visual characteristics of a fire or not. There are two main methods of designing the 
algorithm. The first approach analyzes characteristics such as color, shape, flickering 
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frequency, and dynamic texture of the fire [13]. This requires the use of color spaces; 
YCbCr color space showed to be the most effective for flame detection [13]. Other color 
spaces that can also been used are RGB, CIE L∗a∗b∗, YUV, or HIS [13].  

 

 
 
Figure  8: Hidden Markov model used to detect flame flicker [15] 

 
Color information is not enough to provide accurate results [13]. Movement of fire has 
also been examined for fire detection techniques by using background subtraction 
method, temporal differencing, and optical flow analysis [13]. The Markov model can be 
used to detect flame movement for object that have flame-like colors as well as flame 
boundaries using temporal wavelet analysis [13]. Moreover, a moving camera can be 
used to observe moving flame pixels without using background subtraction [13]. This can 
be paired with detecting color, temporal, and spatial information in each spatiotemporal 
area. However, this method can slow the fire-detecting process since the range is weak. 
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Another method utilized the Wald-Wolfwitz algorithm for flame detection looking a 
parameter such as color and predictive motion movement [13]. The reliability of the results 
was increased using a “convolution operation” [13]. 
 

 
Figure  9: Convolution neural networks approach layers [13] 

 
The second approach of designing the fire detection algorithm utilizes a learning-based 
approach [13]. In this method, the system is provided a dataset of fire and non-fire images 
and is “trained” to make an appropriate judgement by analyzing for specific fire features. 
Convolution neural networks approach is a common approach that achieves this, as well 
as You Only Look Once (YOLO), and is discussed later in the paper. The figure below 
provides a visual of the layers involved 
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.  
Figure  10: Example of the Wald-Wolfwitz randomness test being used for flame detection 

4.2.3. Fire Resistant Enclosure Materials  
 
There are a multitude of fire resistive materials to choose from but what was need for this 
project is something that is light and offers the most fire resistance possible while not 
being excessively expensive. For the purpose of this project the enclosure that will be 
used for the prototype will not be fire resistant. This was done to minimize the cost and 
manufacturing processes for senior design two. If this project was to be mass produced, 
then a fire protective encloser would be utilized to protect the devices in case the fire it 
has warned about has climbed up to wherever the device is located. 

 
A few choice materials have been selected for their fire resistive properties and their ease 
of implementation into a manufacturing process. The first material is Kevlar; Kevlar is a 
synthetic material developed by DuPont and is extremely shock resistant and fire resistant 
[16]. It is not very abrasion resistant but that will not be an issue as the Kevlar would be 
manufactured into a composite material consisting of a resin and the Kevlar woven cloth. 
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The issue with making an enclosure this way is the fire resistance is now going to be 
limited to the resin is used to cast the composite into shape using a mold. The Kevlar 
itself has some draw backs, it is very expensive and being a synthetic fiber, it can cause 
some medical issues if the individual fibers are inhaled [16].  

 

 
Figure  11: Synthetic Fiber Kevlar [17] 

Another choice material is carbon fiber weave. Carbon itself is very fire resistive and in 
its pure form is used for nearly all castings for materials that need to be heated to 
extremely high temperatures, temperatures way hotter than a normal wood fire could ever 
reach. It has the same drawbacks as Kevlar when it comes to cost and handling of the 
raw material. The carbon fiber weave would also need to be made into a composite with 
a high temperature resin which would limit the fire resistance to according to the resin is 
limited to. 
 
The easiest material for manufacturing would be plastic. Most plastics are not fire 
resistant at all. They have many failure modes from melting to ignition. For this project a 
plastic compound that does neither is preferred. Luckily, there are plastics that only burn 
up and off gas when they do so, but they do not ignite or melt. These plastics could have 
additives put in them to increase their fire resistance; an example is any compound that 
is a brominated flame retardant (BRF). These compounds burn up in the fire creating a 
sort of sublimating coating around the plastic which the fire must get through first to burn 
the plastic. 
 



20 

 

 
Figure  12: Carbon Fiber Weave [18] 

 

4.2.4. Battery Charging and Battery Chemistries 
 
The battery for the project was capable of lasting throughout the night and when the solar 
radiation is low on average for the winter months it could handle not being at full capacity 
during the day. There are many battery chemistries to choose from with a few types of 
batteries not being viable at all for the system. Lead acid and absorbent glass mat car or 
RV style batteries could not be used due to sizing and weight. Lighter smaller batteries 
were the only batteries available to be used so a NiCad or Li-Ion battery style was used. 
For this project, the best option was to go with a battery within budget that was the most 
power dense and the chemical makeup of said battery allows for the most charge cycles. 
 

 
Figure  13: Maximum Charge/Discharge Cycles Versus Battery Type [19] 
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Researching different types of batteries lead to an issue arising between them. The max 
depth of discharge had to be accounted for along with how many charge cycles the 
batteries could handle. NiCad, or nickel cadmium batteries, were a cheaper option for the 
project but the weight and size made them a bad option. Nickel-metal hydride batteries 
come at a high price and lithium ion batteries, along with lithium polymer batteries, have 
the same level of charge cycles so it made sense to go with which ever one was the 
cheaper option. The best option at first seemed to be lithium iron phosphate, or LiFeP4, 
but this one is the most expensive out of all the options but did allow for the most charge 
cycles out of them all. For a final product it may be a better option to go with this battery 
but for the sake of cost, weight, and size Li-Ion batteries were the best option for the 
prototyping of this system. 
 

 
Figure  14: Self-Discharge Rates of Batteries [19] 

To further cause issues in choosing a battery for the project the self-discharge rate was 
a factor to deal with. Self-discharge is when a battery will slowly lose charge over time 
when not in use. Since the solar panels were going to charge the batteries every day the 
discharge rate wasn’t a massive impact but the battery that was chosen needed to be 
able to handle a day of not being charged and remain in stand by for when the weather 
blocks out the sun for a while like in the case of a thunderstorm or hurricane. The only 
battery that could be ruled out this way was NiMH as it had the highest self-discharge rate 
of all the batteries being looked at. 
 

4.2.4.1. Effect of Temperature on Batteries  
 
For this project, the batteries are going to experience high ambient temperature in the 
summertime and most likely very low wintertime temperature due to being placed in 
higher locations out in the open. These conditions change how a batteries chemistry 
works and will change the overall life and performance of the battery. Wintertime 
temperatures shorten the charge life of a battery by slowing down the chemical reaction 
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happening in the cell when power is being drawn from it. When in standby and not being 
used cold temperatures will increase the self-discharge rate of the cells which is only 
worsened by the fact that wintertime conditions lessen the output of a solar array because 
the solar radiation isn’t as condensed as in the summertime. This will cause the overall 
max amp to draw to be less as well and could cause total system failure due to over 
drawing the battery.  
 
The figure bellow is a graph that highlights what happens to the battery maximum charge 
storage capacity if the temperature is increased like in summertime conditions. As shown 
the max storage of the battery is not affected until the natural battery charge cycle lifespan 
starts to end. The high temperatures only increase the damage done by having a battery 
go through many charge cycles with the peak temp of 55C having the most affect it can 
be postulated that further increase would cause even more damage but seeing how 55C 
is 131F it is unlikely ambient temperatures will exceed this unless the device is currently 
engulfed in a fire. 
 

 
Figure  15: Temperature Vs Charge [20] 

 
The other figure, shown below, is a graph that shows how an increase in temperature on 
a battery will lower the max amp output of a battery. RnCw is the current flowing across a 
resistor and capacitor in parallel and demonstrates how the battery has an exponential 
threshold at 45C and any increase beyond this will drastically decrease the max amp 
draw of a battery. This could cause the same issue as the wintertime conditions in where 
a total system failure is cause due to pulling to many amps from the batteries.  
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Figure  16: Temperature Vs Time (cycles) [20] 

 
All this means the system needed to be designed to be able to handle the drastic 
temperature differences seasonal changes brings which was accounted for by doubling 
the power supply system. The number of battery cells was doubled along with the solar 
array. This safety factor of two will provide a hefty cushion of protection any temperature 
change might cause on the system by having the system draw minimum power in the 
most optimal conditions. 
 

4.2.5. Li-Ion for System Power 
 

The final decision to use Li-Ion batteries for this system was made from multiple different 
decisions. The major decision that this battery was chosen for this project was cost and 
availability. This means that size and configuration for the battery was found and sourced 
for the constraints in the project. Many of the students working on this system had the 
standard 18650 sized li-ion cell battery to use for any testing of the system so it made the 
most sense to go with this battery chemistry for the system. 
 
A few smaller reasons is the way li-ions operate such as how the power output doesn’t 
drop as much when the battery is depleted. The chemical make-up of the battery also 
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allows for a minimum for 70 full charge cycles. That means the batteries can be fully 
discharged and then recharged to full 70 times before the battery health starts to 
deteriorate. This does not prevent the battery from operating anymore it only causes the 
battery to discharge faster than when it was new. 
 

4.2.6. Power Supply Topology 
 
The power supply for this system was a solar array that is 12 volts nominally and is 
hooked up to a LT3652 solar lithium charging IC that took the 12 volts and regulated it to 
the most optimal voltage, 16.6 volts, with a mix current draw of 2 amps. This was then 
hooked up to lithium batteries in series. The battery and solar panels are then hooked to 
a buck converter that maintained 3.3-volt and 5-volt rails for the Pi and sensors for the 
system. This power system was able to utilize the solar cells and battery at the same time 
as to not put undue stress on the batteries.  
 

4.2.3.1  Linear vs Switching Regulators 
 
There are two common types of power converters: Linear and Switching. Linear 
regulators are the simplest form of regulator as they directly convert power in to power 
out. That is, there is no complex operation internal to the regulator. This simple 
conversion, however, comes at a price. Linear regulators dissipate a lot of heat when 
used and are generally inefficient. As a result, a linear regulator will require a heat sink if 
a lot of power is expected to be converted to heat. This will add weight and cost to the 
design. Luckily, a linear regulator is generally cheaper and has less components to 
support it than a switching regulator. A downside to using linear regulators is that they 
must always step-down voltage. There is not a way to step up the voltage through a linear 
regulator. Switching regulators provide many different topologies that can, in some cases, 
raise the voltage.  
 
It is even possible to design a switching regulator that can lower or raise the input voltage 
if it is unstable and is sometimes higher or lower than the desired voltage. This does not 
mean that linear regulators do not have their use. Linear regulators are great when there 
is a decent amount of power coming in and lower power draw on the other side. An 
advantage to using them is when there is a small difference in voltage going in and voltage 
coming out. If the desired voltage is just slightly lower than the input voltage, then the 
efficiency can be greater than 97%, but only in this case. Usually, it is lower. Considering 
our design with batteries: two batteries in series will generate around 8 volts. If we use a 
linear regulator to step down to 5 volts or 3.3 volts, there is a significant (greater than a 
volt) decrease in voltage. I can be expected, in this case, that the linear regulator will be 
much less efficient than a switching regulator. Since our design is purely powered from a 
solar panel and a battery, it important to ensure must that the system is efficiently 
transferring power between different parts of the circuit and not wasting any power in heat 
dissipation. 
 
Switching regulators, on the other hand, are the more likely solution that will be 
implemented in the final design. Compared to linear regulators, they are more expensive 
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and require more support circuitry causing them to be a bit more complex than a linear 
regulator. The benefit is in efficiency. With a circuit designed properly, the power coming 
in can be efficiently converted to the proper power going out. Sometimes even greater 
than 99%! Since the system is charging the battery and running the circuit off of the solar 
panel, the system will need to efficiently step down the voltage from the panel to the 
battery charge voltage, and then from the battery voltage to the circuit voltage. This 
means the system will need 2 to 3 switching regulators in our final design. The high 
efficiency implies that there is very little heat dissipation. This is good, as our ambient 
temperature is going to be higher (or lower in some cases!) than room temperature. The 
device is designed to operate outside. In turn, it not ideal to have the device to have too 
much effect on the heat around it such that it does not exceed specific component heating 
constraints. Since the switching regulator has more components to support it, it will take 
up more board space. This is a price that must be paid for the efficiency boost. In the end, 
the board space is not critical if designed appropriately. Since our project does not have 
any externally imposed sizing constraints, it was possible to move forward with switching 
regulators. 

 

4.2.3.2  Buck and Boost Converter 
 
While discussing switching regulators, it is good to have a general idea on how the major 
topologies of different switching regulator designs operate. In the design, the system does 
not expect to be raising voltages. Therefore, we need to step-down a voltage. This kind 
of converter is known as a Buck Converter. They are configured only to step-down DC 
voltages. Buck converters store energy in a passive component, usually an inductor, and 
uses that stored energy to output a specific value. To store the energy, a pulse width 
modulator can be used to charge and discharge the passive component as necessary. 
The duty cycle of this pulse determines the voltage that is output since the passive 
component must be discharging to provide current. While charging, the passive 
component is usually supported by a capacitor on the output end of the regulator. The 
passive component is in series with the load, causing a voltage drop due to the impedance 
of the device and the time that can charge the passive device. Even though the voltage 
is lower, the charging/discharging of the device still keeps the average power equivalent 
(or nearly so) while in operation. 
 
In juxtaposition to a Buck Converter, a Boost Converter is designed to increase voltages. 
This step-up behavior works in the same way as the Buck Converter: A transistor works 
as a switch and at the right switching frequency it charges and discharges a passive 
component, usually an inductor. Since current cannot change instantaneously across an 
inductor, when the switch is open, the energy stored in the inductor elevates the voltage 
level above the input of the storage component to keep power consistent on each leg of 
the power network. This action compensates for the lower voltage on the other side at the 
cost of lower currents on the high side. The load now sees a higher voltage than the input 
source has. 
 
In both designs, heavy filtering may be necessary for sensitive components to avoid 
issues with the switching action. This “On-Off” methodology introduces noise into the 
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power system which can be detrimental to digital logic devices (like microcontrollers, 
processors, or DSP devices). In many cases, a switching regulator will feature strong 
capacitors in the input and output stage to help compensate for the noise and filter it out. 
 

4.2.7. Solar Array Design 
 
Assuming a 12v system that draws an average of 100mA, it was determined that the 
needs of the system to be almost 29Wh per day. For five hours of maximum power output 
with an MPPT 5.76W is needed, so a 500mA MPPT would be needed. The MPPT would 
have to be a custom made one as the ones available for purchase are over specifications 
and would not be able to handle the low amount of power flowing through them efficiently.  
 
To make sure the system could handle any solar radiation issues that could arise for a 
few reasons such as weather or the panels getting dirty the entire system had a safety 
factor of 15% was applied. The needed battery size was doubled to account for 
unforeseen issues. Two 1.5 watt panels were chosen and these two panels were wired 
in parallel to increase the amperage and to not exceed the 40 volt max of the LT3652 IC. 
 

4.2.7.1. Azimuth and Elevation/Tilt Angle 
 
To properly arrange a solar array to absorb the most solar radiation as possible it needed 
to have the proper azimuth and inclination angle for the location it was being used at. 
Azimuth is the direction the panels are pointed, measured in degrees with 0 degrees 
being south and north being 180 degrees, and inclination is how far a panel is tilted up. 
The change is performance of the system if not properly set up is drastic and the location 
of the solar panels changes both these parameters which can make it difficult to calculate 
the proper setup. If the location is west of the Mississippi river then magnetic declination 
needs to be considered for the azimuth angle.  
 
For panels in the Northern hemisphere if the magnetic declination is positive, or east, the 
panels need to be rotated eastward at the angle of magnetic declination that accounts for 
the change in the Earth’s magnetic field lines. If it is negative, or west, the panels need to 
be rotated westward to account for the declination. This must be done because the earth’s 
magnetic field is not constant with what true north or true south is. A compass has slight 
errors in it due to magnetic declination and must be taken into account when setting up a 
panel as all calculations are based off true north.  
 
Setting the tilt of a panel is simple if the panel is to be ridged mounted and not to be 
moved. The tilt angle is simply equal to what the latitude is in the location the panels are 
being set up. Depending on the location though the panels might need to be tilted plus or 
minus a few degrees to optimize them for certain seasons. If the system produces more 
power than it consumes in the summer than the system may struggle in the winter and if 
this is the case then the tilt should be angled up, plus, about 10 to 15 degrees to account 
for low winter production. This will affect the summertime production of the panels but for 
this system the summertime solar energy production will be more than what is needed 
and the locations in which the system might be placed is expected to have harsh winters.  
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Figure  17: Azimuth and Elevation 

 
A small note on solar tracking systems and their value to this project. While solar tracking 
technology does exist and could be designed and manufactured into this system it adds 
significant complexity and design, along with weight. Solar tracking systems cost between 
$600 to $1000 per panel depending on size and, at best, increase production by about 
20%. For our project, the cost and added complexity means that they will not be used. 
 

4.2.8. RF Design and Frequency Selection 
 
To work effectively over a large area, the system needs to wirelessly transmit data. 
Different antenna designs and frequencies play a role in designing the circuits and 
choosing the components that will work with wireless technologies. This section 
investigates the different issues with RF design and some decision-making processes 
that took place to choose frequencies and other design elements. 
 

4.2.8.1. RF Considerations 
 
RF and wireless applications require that some specific design rules be followed. If these 
rules are not taken into consideration, then significant power and range issues may 
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present themselves. At low power levels, avoiding signal loss is very important. Any piece 
of wire can be considered an antenna. How well that wire radiates energy is dependent 
on the wire being resonant at the same frequency as the signal applied and that the feed 
point of the antenna is matched to the impedance of the attached transmitter. Direction 
and range are then determined by the design and shape of the antenna. It is possible that 
the radiated energy be aimed at a single point or that it radiates out in a sphere or 
doughnut shape. 
 
The antenna must be the correct length at the frequency of operation, and it must have 
its impedance matched by the transmitter or receiver to operate correctly. Impedance 
matching maximizes the power transfer from the transmitter or receiver to the antenna.  

 

4.2.8.2. Frequency Selection 
 
The main discussion of Radio Frequency technologies comes down to range. Due to its 
massive support, the ideal choice is Wi-Fi. Wi-Fi, however, has limited range. The 
numbers found in the table below are averages. Actual distances depend on a variety of 
variables. The following numbers were compared to get the maximum range out of the 
device. 
 
Table 5: Comparison Between Technology Ranges and Frequencies 

Technology Frequency Range 

Bluetooth 2.45 GHz 30 Feet 

Wi-Fi 2.45 GHz (or 5GHz) 100 Feet 

Zigbee 2.4 GHz 1000 Feet 

FSK Modulation @ 900MHz 900 MHz 2+ Miles 

LoRa 400 MHz / 900 MHz 10 Miles 

 
Using the Free-Space Path Loss equation, the attenuation of radio energy between two 
antennas is determined. 

𝐹𝑆𝑃𝐿 = (
4𝜋𝑑𝑓

𝑐
)

2

 

  
where d is the distance between antennas, f is the frequency, and c is the speed of light. 
 
A graph that shows the best option for longer ranges and frequencies to minimize 
attenuation is generated by trying different frequencies and ranges. 
 
Finally, due to regulations of how much power can be dissipated in the 400MHz bands, 
900MHz is a good solution for global use and higher power dissipation. 
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Figure  18: Signal Attenuation Vs Distance of Different Frequencies 

4.2.8.3.  Antenna Design 
Antenna design plays a big role in RF applications. Without a proper antenna design the 
range and sensitivity of the device will be severely impacted. This section outlines some 
research in antenna design and considerations. 
 
Whip Antennas 
These kinds of antennas are designed for machine-to-machine communication but are 
not used in portable designs much anymore.[45] They are externally mounted, so they do 
not suffer interference issues from a PCB as much as other designs and they are not 
easy to detune. They are very useful for certain applications that could benefit from an 
external antenna. 
 
Helical Antennas 
These kinds of antennas are similar to whip antennas but instead of being a strand of 
wire externally mounted, they are copper that’s wound in a helix shape. Since the 
frequency band is selected by the length of the antenna (among other factors), the 
antenna can take up less space since more of the copper takes up less area being wound 
in a loop. Due to their size and mounting style, they are fairly rugged [21] which means 
they can be put inside the mechanical housing of the device and can be hidden from view.  
 
Chip Antennas 
Chip antennas (Usually made from ceramic) are small and easy to put into a design. They 
have several advantages compared to larger antennas. They are not as sensitive to 
proximity interference and from other components. Furthermore, they are easier to 
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accommodate without simulation [22]. A downside as these are more expensive than a 
trace PCB but they are generally cheaper than other alternatives. 
 
Trace Antennas 
Trace antennas seem to be the cheapest but most difficult antenna to design. They are 
included in the cost of manufacturing the PCB. This means that, if designed correctly, the 
antenna is free! Furthermore, they are more tamper proof since it is embedded into the 
PCB. When tuned correctly they can operate in a wide bandwidth and have a good 
amount of network reliability [22]. A downside to these kinds of antennas are that they 
cannot be modified after manufacturing. Any changes to the antenna require redoing the 
board layout and having new boards manufactured again.  

  
 

4.2.9. Machine Learning/ Computer Vision 
 
This section will cover different methods/models that was considered to use for detecting 
fire using our system. These will cover different filters and adjustments that can be done 
to the images to help the system learn and identify the fire in an image or sequence of 
images. There are multiple ways to help the system identify the fire. It could be using 
deep learning through available pre-trained models or having functions such as optical 
flow or color classification to help identify the area of the fire.  
 
Our system will be able to ignore the background and its noises and identify the fire that 
is within an image or a sequence of images with minimal processing power via Raspberry 
Pi inspired by these methods/models. 
 
 
 

4.2.9.1. Generic Object Detectors 
 
There are several accessible neural networks such as YOLO and Faster RCNN via 
GitHub. Other neural networks were discovered that focuses on detecting fire instead of 
having functions such as object classifier. This subsection covers the comparison 
between them.  
 

4.2.9.1.1. YOLOv3 
 
YOLO (You Only Look Once) is one of the popular object detection methods. In fact, it is 
a state-of-art, real-time object detection system. It is a fully convolutional neural network 
(FCN) and has no pooling used [23]. By having no pooling, it avoids loss of minor features. 
It has great speed and accuracy compared to other state-of-art methods as seen in the 
figure 51 below which is the reason behind its popularity. For these reasons, YOLO is 
one of the top methods that come into our minds to implement in our system [23]. Thanks 
to its popularity, there are many tutorials as well as resources and forums available for 
this model which can help us understand and use it better.  
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Figure  19: Comparison of other state-of-art models on the COCO dataset [23] 

 
YOLO predicts and outputs feature map that has box coordinates, object score, and class 
scores as shown in the figure below. This means that it can classify and detect object at 
the same time. Since YOLO is a fully convolutional network, it can adapt to different sizes 
of images. However, it is recommended to have a constant input size to avoid adding 
complexity and issues during implementation. Since its accuracy and speed is applicable 
for real-time detection, this model is one of our top choices to implement. The reason 
behind the speed of YOLO compared to Faster RCNN is its use of confidence score to 
eliminate many of the predicted bounding boxes per object.  
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Figure  20: YOLO Bounding Boxes [24] 

 
For an image of size 416x416, YOLO predicts 10647 bounding boxes. To reduce these 
boxes in order to detect a dog in the picture as shown in the figure above, it uses 
thresholding by object confidence score and non-maximum suppression as shown in the 
figure above.  
 
YOLO offers great information such as bounding boxes for the detection of objects. It 
even classifies the detected objects from one another. However, most of these features 
are not needed for the purpose of our system. Our system focuses on binary classification 
of whether the flame exists in the image or not. There is a great possibility to utilize YOLO 
(or TinyYOLO) in Raspberry Pi Zero, but this required many adjustments. Through our 
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experiments, implementing YOLO is difficult and tricky due to the limitation of the 
Raspberry Pi Zero. 
 

4.2.9.1.2. MobileNetV2 
 
The main concern lies in whether our embedded system can handle all the computations 
and processing fast enough to detect the fire. Thus, other models were investigated that 
are commonly used in a similar set up as our system.  
 
One of the models found that is commonly used with Raspberry Pi is MobileNet. This is 
another model that is accessible and most optimal for our hardware, Raspberry Pi Zero. 
MobileNets are low-latency, low-power models for mobile applications to perform object 
detection, classification, and segmentations. There are MobileNetV2 and MobileNetV3 
available through GitHub [25]. These can also be used for real-time object detection and 
can be easily implemented by Raspberry Pis. Many examples are available online. 

 

Figure  21: Comparison between MobileNetV2 and MobileNetV3 [26] 

 
As seen in the figure above, MobileNetV3 has better accuracy compared to MobileNetV2.  
However, the MobileNetV3 being new makes the MobileNetV2 preferable to use when it 
comes to training the models ourselves because of the details that could be found about 
the hyperparameters of MobileNetV2 in the GitHub and not of MobileNetV3.  
 
 
 

4.2.9.2. Neural Network Frameworks/ Services 
 
Different frameworks exist to help with the implementation of neural networks. When 
designing software around a neural network framework, it is important to discover the 
differences in each framework. The strengths and weaknesses of each framework will 
determine which framework is used for the project and how well it performs. The best 
framework, which most optimal for the capacity of the Raspberry Pi Zero, was taken into 
consideration.  
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4.2.9.2.1. Keras 
 
Keras is a high-level neural networks API, written in python. [27] It allows easy prototyping 
of a model and runs on both CPU and GPU. It is easy to use and beginner-friendly, but it 
does not allow many modifications to the model like Pytorch does. There are simple 
examples available online to test and create your own neural network architecture quickly. 
There are some models such as Faster RCNN that are coded using Keras. Keras can 
also accommodate to Raspberry Pi which makes Keras one of our top frameworks to 
utilize.  
 

4.2.9.2.2. PyTorch 
 
PyTorch is an open source machine learning framework that excels in researching 
prototyping and production. [28] Pytorch is known to be harder to implement than Keras, 
but it provides more flexibility and features. Most of the models available publicly are 
coded using PyTorch as it is one of the top used frameworks when it comes to machine 
learning researches as it offers fast and dynamic training.  
Many industries also look for proficiency in this framework as they also use this as their 
main framework. Understanding and being able to use PyTorch should be useful for us 
in long term and a good skill to have. Knowing how to use this framework should indicate 
a good understanding of machine learning.  
 

4.2.9.2.3. TensorFlow/TensorFlow Lite 
 
TensorFlow/ TensorFlow Lite is an open source deep learning framework for on-device 
inference. [29] It is commonly used with the Raspberry Pi Zero. To implement deep 
learning, we would need to install this to the system. Most of the tutorials we encountered 
use this framework especially for Raspberry Pi. It is also most optimal for integrating AI 
into a product.  
 

4.2.9.2.4. OpenCV 
 
OpenCV is an open source computer vision library [30] that has many computer vision 
applications. OpenCV is the best choice among the others we mentioned when utilizing 
CPU. This is because it has many libraries and models that are optimized for CPU use. 
The models mentioned earlier can be implemented using OpenCV using their pre-trained 
models. OpenCV has many libraries available for us to use and is popular enough to have 
many resources to help us guide through the process.  
 

4.2.9.2.5. Google Colab 
 
To train the model, we need to perform it outside of Raspberry Pi Zero as it takes too 
much processing power. Google Colab allows usage of GPU for faster training and has 
many necessary packages installed already. It is user friendly and has easy access to 
Google Drive which makes retrieving dataset easier if it is saved there.  
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4.2.9.3. Frame Differencing 
 
Frame differencing is where we simply take a difference of values between the two 

images to see where the movement is significant. This is a way of capturing the temporal 

information between the images. Since flames will flicker and spread, it should have much 

more movements compared to the background. Thus, we expect the frame differencing 

to be effective in identifying the flame. One of the main concerns for using frame 

differencing is distinguishing the flames from other movements such as leaves swaying 

or movements of animals in the forest. These can be solved by eliminating background 

noises and noticing a big difference if an animal is detected. Applying additional filters 

such as blurring, or normalizing will help the model detect the fire from those subtracted 

images.  

 

An example of frame differencing can be seen in the figure below. The white values 
indicate high differences or movements between the frames. In the example, it is 
noticeable that the movement was significantly recorded for the human and the flame.  
 

 

Figure  22: Frame Differencing [31] 

There are other researches done on computer vision with fire detection using frame 
differencing. The method by the Ministry of Public Security of Shenyang Fire Research 
Institute shows how the smoke is also being detected via frame differencing as seen in 
the figure below. This is an interesting concept as we initially disregarded the idea of 
smoke being detected in our system. However, it is one of great indicators of forest fires 
and identifying smoke in our system can warn or notice fire in great distance.  
 
An example of frame differencing from the Ministry of Public Security of Shenyang Fire 
Research Institute is shown in the figure below. It shows both cases where the smoke is 
detected, and the flame is also detected by itself through the help of frame differencing.  
As seen in the figure, the smoke can be large and seem to be easily recognizable. This 
may mean that the smoke detection may possibly be added to our system. Furthermore, 
these examples show how effectively can frame differencing isolate desired subjects of 
fire and smoke in order to alert the system. This is because the fire and smoke have 
distinct movements compared to the other movements in the background. They also have 
patterns that can be recognized using frame differencing which also helps distinguishing 
them.  



36 

 

 

 

Figure  23: Frame differencing continued  [32] 

 
Frame differencing can greatly help in distinguishing the background from the flame and 
smoke by capturing the flickering movements as seen in the previous examples. Being 
able to detect smoke is an additional feature that may significantly improve the system’s 
effectiveness and utility. For instance, even if small flame was missed, the smoke can 
trigger the system earlier rather than waiting for the flame to be large enough to be 
recognizable.  
 
 
 

4.2.9.4. Color Classification 
 
Color classification is a method to classify area of an image by its color values. It can 
distinguish different color values, hues, and saturation. It is a simple yet effective method 
to add into a system. Since our focus is forest fires, the fires should have significantly 
different color from the other objects in the background. Thus, we expect the system to 
be able to provide better results by applying color classification as part of its identification 
process. Adding color classification should further help in narrowing the computation time 
as well as increased accuracy by providing better predictions of where the fire may be.  
 
Compared to frame differencing, color classification may run into more ambiguous 
detections, since forest contains many objects that can be detected as false positives 
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such as red flowers, woods, and leaves. To avoid confusion between different objects, 
focusing on specific unique color that is most applicable to flames should increase 
accuracy. However, choosing a specific value of color to detect fire as a threshold is tricky 
as it increases false alarm rate or lower overall accuracy.  
 
But the application of color classification to a system is much easier compared to frame 
differencing. OpenCV’s functions help ease the application of color classification or 
dissect images into the RGB layers and focus on the R layer alone to help the model 
detect the fire. OpenCV is also a reliable library that provides color classification and 
shape detector. It also has a packages for Raspberry Pi. The figure below shows an 
example of color classification and shape detector using OpenCV libraries alone. It 
computes the center of the contour, perform shape detection and identification, and color 
labeling by taking averages of a particular image region.  
 

 
Figure  24: Color Classification and finding contours using OpenCV [30] 

 
There are other researches that also implemented color classification in order to detect 
fire. Figure 25 is an example of a research that utilized the color classification in order to 
detect the fire. As you can see in the example, flame is within the predicted area using 
the color classification. However, other objects such as wood or person are also detected 
as false positives. In the research, they were able to minimize these false positives by 
adding motion along with the color classification to narrow the predictions down.  
 
Color classification may greatly be enhanced by adding other methods such as frame 
differencing to minimize false positives by isolating objects that have motion and desired 
color value. By doing so, leaves, trees, and structures may easily be distinguished from 
the fire as it will not have as much of flickering movements as the flames will have. By 
eliminating most of it, it should significantly help our system to learn or identify the flames 
from others.  
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(a)                                                                            (b) 

 

(c) 

Figure  25: Color of Fire Classification [31] 

(a) original image (b) red denotes pixels that were classified as being the color of fire (c) color classification with motion 

 
 
Since we are aiming to detect fire in a forest setting, these flames will be very 
distinguishable compared to the other objects in terms of color. Adjusting different settings 
such as saturation and filters may also help in identifying the fire and distinguish it from 
the rest of the background.  
 

4.2.9.5. Optical Flow 
 
Another method to detect motion is optical flow. This method can be implemented using 
OpenCV [33]. Optical flow shows the vector or density of an object’s movement between 
two consecutive frames. The dense optical flow in OpenCV uses Gunner Farneback’s 
algorithm. In this method, the direction corresponds to hue value while the magnitude 
corresponds to the value plane. An example output can be seen in the figure below. 
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Figure  26: Dense Optical Flow [33] 

Top image in the figure above is the original image while the bottom image shows the 
result of dense optical flow via OpenCV. Optical flow is another method to detect motion 
like frame differencing. Optical flow adds a bit more complication than the frame 
differencing, but the available OpenCV library helps us implement this method with ease 
much like color classification.  
 
By taking in consideration that the flames flicker in concentrated area spread slowly, 
optical flow can best illustrate this dense movement in the sequence of images and 
identify flame. This is an easier implementation than frame differencing as we do not need 
to experiment our own filters and thresholding as much as frame differencing would need.  
 
Optical flow also helps us distinguish other movements such as animals moving by 
comparing the density and the vector of the movement. OpenCV optical flow is able to 
ignore the background noises which can help reduce false positives. Thus, this method 
is very effective in detection motion while identifying its density and vector.  
 

4.2.9.6. Superpixel Localization  
 
Another method we found interesting and effective is superpixel localization. Instead of 
looking at the whole image, pixel by pixel, or by looking at bounding boxes, it localizes 
objects by segmenting the image into perceptually meaningful regions similar in texture 
and color.  
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A research from Durham University [34] shows how they were able to effectively detect 
fire using superpixel localization and a network architecture with reduced complexity. By 
using superpixel, they were able to increase accuracy without adding complexity to the 
network architecture and with no temporal information. Their research shows that using 
superpixel significantly outperformed other works in the non-temporal fire detection.  
 

 
Figure  27: Superpixel Localization from Durham University [34] 

 
This method is also available in GitHub created by Toby Breckon [35]. He uses FireNet 
and InceptionV1-OnFireNet architecture shown in the figures below along with the 
superpixel localization explained in the research. These netowrks have binary detection 
architectures that determine whether an image frame contains fire globally. However, by 
adding superpixel localization, it breaks down the frame into segments and performs 
classification on each superpixel segment to provide in-frame localization. The superpixel 
localization uses SLIC algorithm. For the best performance and throughtput, use the 
FireNet model.  
 

 
Figure  28: FireNet Architecture [35] 

If slightly lower false alarm rate is desired despite having lower throughtput, then use the 
InceptionV1-OnFire model shown in the figure below. 
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Figure  29: InceptionV1-OnFireNet Architecture [35] 

 

An example output is shown in the figure below. As seen in the figrue, it was able to 
successfully identify the fire in the given image by selecting the correct superpixel regions 
associated to the fire.  
 

 
Figure  30: Implementation of Superpixel Localization with CNN [35] 

Left Image: Original image, Middle Image: Superpixel Localization, Right Image: Predicted Fire Regions (Green) 

 
These models are available in pre-trained form using the dataset found in the Durham 
Collections. Both models were able to achieve over 90% accuracy using that dataset 
according to the Durham University’s research paper.  
 
The superpixel localization can be applied by using the OpenCV as it provides three 
different algorithms we can choose from to perform superpixel. They are SLIC, SLICO, 
and MSLIC as shown in the figure below. [30] 
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Figure  31: Superpixel Localization using OpenCV  

 

4.2.9.7. Original CNN (Convolutional Neural Network) Design 
 
There are other available models or neural networks out there but not much that are 
publicly available for us to implement especially with the Raspberry Pi Zero. To solve this 
problem, we can create our own CNN architecture. However, this means finding a novel 
way in such a short amount of time with limited resources such as accessible GPU and 
datasets. This route seems very impractical for our project considering there are already 
readily available CNN that may fit fine with our goals.  
 
Combining all these methods’ advantages, we may be able to create something novel 
and much more effective system than what is out there. For example, combining faster 
RCNN and YOLO may result in better model. Utilizing color classification and frame 
differencing will also help in creating better accuracy for the model [10]. Or optical flow 
with one of the generic object detectors may work fine as well. Another design we may 
add to our model is changing its hyperparameters to optimize for detecting fires. 
Reduction of latency is also possible by eliminating unnecessary features that come with 
the pre-trained models and libraries such as classification and segmentation.  
 
However, due to time constraint, testing all the methods mentioned above is not possible 
as it will take time to design, program, train, and test the model. Tweaking the 
hyperparameters alone would be tedious and take tremendous amount of time to find the 
best values for the models to perform. In addition, it does not provide much scalability 
and promising improvement. 
 
Another option to ease the heavy computation usually brought from the models is to 
create a much simpler CNN architecture concentrating on binary classification and just 
identifying whether the fire exists or not. This model can be improved by adding the other 
methods mentioned such as color classification or motion detector to eliminate false 
positives in the early stage.  
 

4.2.9.8. Settings for Machine Learning 
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4.2.9.8.1. Programing Languages 
 
Python is used for our programming language to utilize machine learning. Many resources 
use Python as well which makes it easier and efficient for us to use. Python is also easy 
to learn and ideal for people who wants to learn a new programming language. Thus, 
making it easy to follow or understand the code by itself too.  
 

4.2.9.8.2. Hardware 
 
We chose Raspberry Pi Zero to implement computer vision in our system. It has low cost 
while providing decent amount of memory and speed for our system. Another system we 
were considering was Raspberry Pi3. It was widely used and had several tutorials 
available online to implement computer vision. However, it had much higher cost 
compared to raspberry Zero. Furthermore, our system does not require the output to be 
instantaneous. Our priority for our system’s goal is for it to be able to detect fire fast 
enough to relay the message to the other systems. Thus, it was decided that the 
Raspberry Pi Zero should sufficiently perform and meet our goals while saving us 
significant cost.  
 

4.2.9.9. Dataset 
 
For our model to have a good performance, it is optimal for us to train our models instead 
of utilizing the pre-trained models available online. However, this requires us to create 
our own dataset to train and test our models. Usually, a dataset would contain thousands 
of images for the model to learn from. The number of images can be increased improve 
its performance if adjusting its hyperparameters seems ineffective. Another possible 
source of a dataset would be utilizing similar dataset other research mentioned earlier 
has used.  
 

4.2.9.10. Summary and Update 
 
Utilizing Raspberry Pi Zero caused unexpected obstacles during our development of the 
software for machine learning. It has limited access to many packages that TensorFlow 
offered. The processing is too slow to install many of the packages that are needed to 
implement most of the pre-trained models available online such as YOLO. Furthermore, 
Raspberry Pi Zero is not optimal for real-time object detection due to its limited memory 
and processing power. It cannot handle complicated neural network structures with many 
parameters. Thus, simple convolutional neural network is best used for this set up unlike 
YOLO. There are many complications just to install the right packages for Raspberry Pi 
Zero. However, OpenCV can be successfully installed and it had enough processing 
power to run a pre-trained model for one or two images (sacrificing some processing 
time).  
 
As mentioned earlier, Raspberry Pi Zero cannot handle much processing and kept 
running into issues with necessary packages. Therefore, the generic object detectors 
mentioned earlier were not successfully implemented. To handle this issue, resources 
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designed specifically for Raspberry Pi were tackled first. Upon searching for more, Fire 
Detection Net [36] were discovered which has simpler neural network architecture 
compared to the generic object detectors and other fire detection computer vision 
research to accommodate for Raspberry Pi capabilities. From there, we ended up 
adjusting the layers and hyperparameters to achieve acceptable performance. The 
designs and architectures of the neural network is discussed later in the section 5.4.2. 
This was time consuming and did not allow us to further implement the other networks. 
 
Keras, TensorFlow, and OpenCV are sufficient and can be operated in Raspberry Pi Zero 
for application of computer vision to the system. Although not all the versions worked well 
with it. Keras 2.1.5 and TensorFlow 1.8.0 were the only ones that properly worked during 
our development. This was easier to install via Python 2.7 version. Different versions 
would have issues with installing or managing the code. The whole process for the 
TensorFlow and model to load would take few minutes. However, the Raspberry Pi is not 
capable of training the model. Therefore, Google Colab is used to train and test the model 
before implementing into the Raspberry Pi. Google Colab can be either Python 2.7 or 3 
as long as the model is trained with the same version of Keras and TensorFlow. 
Otherwise, there will be problems in loading the model in Raspberry Pi.  
 
The color classification went smoothly as researched beforehand. However, to detect 
motion, dense optical flow was utilized instead of the frame differencing. This is mainly 
due to the time constraint. Optical flow is much easier and efficient to use compared to 
frame differencing. Through testing, it showed it can detect motion accurately. In contrast, 
frame differencing requires more refining after subtracting the images without the 
assurance of improvements. The same reasoning applies to superpixel localization. 
There was not enough time to test without guarantee of improvements.  
 
For the dataset, there was an easier way to create an original dataset consisting of few 
hundred images by using the Microsoft API which is explained more in 5.4.2.1.  
 
 
 
 

4.3. Component Research 
 
An even narrower view than before is the selection of individual components. In the 
following subsections, different components are compared to see if they make a good fit 
for the system. These components, and their selection, will take parts of the previous, 
higher level, sections and focus on individual aspects that set the components apart from 
the others and lend themselves to a good design. 
 

4.3.1. Controller Selection 
 
The fire detection system operates in two parts: Process the sensor data and process the 
network data. Since these devices are wireless and need to be put out over a wide area, 
controllers that can support wireless communication and also process the sensor data 
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are needed. Some options, initially investigated, were the MSP430 family, ATMega 
family, and Espressif ESP32 controllers as they are popular options for controllers and 
have a wide variety of resources. As discussed in the previous section about Radio 
Frequency communication Technologies, LoRa modulation was chosen as the physical 
layer for communication. Because of this, the MSP430 and ATMega microcontrollers fell 
out of favor since they do not inherently handle RF communications. They would have to 
be interfaced with another circuit to implement the RF design and that would increase 
cost and complexity. To remove this complexity, the SAMR35 was chosen. It contains a 
LoRa and FSK modulator/demodulator built into the chip. Combined with its low power 
usage and high RAM options, it is a good choice. 
 
Note: All values are shown at their highest possible offering if multiple values are given. 
Table 6: Comparison of Microcontrollers 

Controller RAM Flash Avg Power (mA) 
(Tx/Rx/Run/Sleep) 

Sleep 
mode 

Wireless 

MSP430 66KB 512KB -/-/2.36/.00045 Yes No 

ATMEGA4808 48KB 6KB -/-/11/.0001 Yes No 

ESP32 520KB 4-
16MB 

240/100/30/.005 Yes Yes 

SAMR3x 32KB 256KB 95/16/4.5/.0008 Yes Yes 

 
Finally, the matter of sensor reading, machine learning, and image processing was 
discussed. To handle this simply and quickly, the Raspberry Pi Zero was chosen since it 
can run Python code (making the software easier to write and maintain) and it has a 
relatively low power consumption: about 100mA.  
 

4.3.2. Radio Frequency Communication Technology 
 
Since the 900MHz band was chosen as our frequency of choice, there are only a few 
simple to integrate solutions on the market. IEEE 802.11ah would be ideal, however it is 
not quite ready for the industry just yet. 
 
This leaves only a few viable options like XBee and LoRa. 
 
LoRa appears as the best modulation technique as it is simple, has some examples, and 
has some resources to pull from. Furthermore, the SAMR35 microcontroller already has 
the LoRa modulation scheme built into the chip. Therefore, LoRa was chosen as the 
modulation technique. Finishing out the project, however, showed that the LoRa 
implementations shown online used external transceiver ICs (like the SX127x series 
chips) or were made for LoRaWAN. This is different than LoRa as it is a MAC layer built 
on top of LoRa. This made for some interesting challenges as discussed later in the paper. 
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LoRa is still a good choice and so more time would have been needed to complete the 
project as intended. 
 
 

4.3.3. Fire Detection Sensors 
 

The solution chosen to tackle to the environmental issue of forest fires has been narrowed 
down to sensor detection based on past research and implementation and understanding 
of forest fire behavior. The devices detect fire using three main approaches: flame 
detection, gas detection, and smoke detection.  
 

 
Figure  32: Hydrogen sensor mounted to a tree during an experiment done in Humboldt University in Berlin, 
Germany. [9] 

This approach provides an efficient method of detecting frame light in the nighttime, by 
identifying infrared radiation, but also during the day by sensing specific gasses, smoke 
particles, and beams of bright light (flame) [37]. Flame sensors observe the wavelength 
of a burning flame using infrared sensors as transducers. Gas sensors are designed to 
detect the concentration of specific gases in the atmosphere also using infrared sensors. 
When the concentrations reach the sensor’s maximum reading, an alarm is triggered. The 
common gasses released during a fire emission include carbon monoxide, carbon 
dioxide, hydrogen, nitrogen dioxide, sulfur dioxide, and volatile organic compounds [14]. 
Smoke detectors work by emitting alpha particles to the atmosphere. When smoke is 
present, the ionized air molecules interact with the smoke. Other smoke detectors 
function by emitting light to its surrounding; the presence of smoke will cause light 
shattering which sends the signal of a smoke alarm [14]. 
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Camera surveillance is also another technique that has been used by other systems. In 
this case a video camera system is set up in the forest and used to recognize a spectrum 
of smoke and fire during the day and night [3]. Other techniques use thermal cameras to 
detect heat and glow of a fire. Moreover, Infrared spectrometers have been used to 
observe specific visual characteristics of smoke. Lastly, LIDAR (light detection and 
ranging) have been used to measure reflected rays from smoke particles [3]. Cameras 
provide a range of opportunities however there are challenges associated with using 
them; cameras record images with a number of pixels and observes the motion between 
the images to compare pixels to the characteristics seen in a fire. This comparison is done 
through an algorithm [3]. Such optical systems are usually integrated with local maps. 
 

 
Figure  33: FireWatch adopts a similar concept to our method of scattering sensors in a forest, except their system 
uses cameras [3] 

 
An additional advantage to our approach is the use of wireless sensor networks. A 
wireless sensor network is a cluster of “low- cost battery-powered sensor nodes” that 
uses wireless communication [38]. A wireless sensor network mainly includes numerous 
sensor devices that typically use low power, low processing memory, and low bandwidths 
[39] Within this network will be a wireless mesh network, which is defined as a “multi-hop 
wireless network formed by a number of stationary wireless mesh routers” [38, 39]. By 
creating a network of sensors that communicate with each other and send updates to the 
central hub, we are able to identify localized and sweeping fires occurring in a forest. Long 
Range Wireless Data Telemetry, which uses bi-directional VHF / UHF radio frequencies, 
has been studied and suggested to connect multi-node fire sensors and GPS to create a 
fire detection prototype with promising results due to its wide range [40]. 
 

4.3.3.1. Sensor components. 
 

Based on the research, the following components were considered as sensors to be used 
in the system based on electrical characteristics (supply voltage), cost, I2C compatibility, 
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and principle of detection. Each sensor listed provides an advantage considerable 
enough to be worth exploring. 
 
Table 7: Gas Sensors 

Gas 
Sensor 
Name  

Op. 
temp. 

Comm. 
protoco
l/ 
Output 
type  

Op. 
Volta
ge 

Cost Notes 

Renesas 
Electronics 
America 
Inc. e 
ZMOD4510 
Gas 
Sensor 
Platform 
Smoke 
Sensors 

-40 ~ 
+65 C 

I2C 
interface 
Up to 
400kHz  
 

1.7V – 
3.6V 

5 for 
$56.
13  
 

Displays air quality index 
 
(NOx) and ozone (O3) (20 – 
500ppb). 
 
 

AMU gas 
sensor 
 

-5°C ~ 
+ 
50°C 

Analog 
output 
with 
Analog 
to Digital 
Convert
or 

1.4V 5 for 
$40 

CO2 (eCO2) range from 400ppm up 
to 29206ppm. 
 
eTVOC range for CCS811 is from 
0ppb up to 32768ppb. 

Senseair 
CO2 
sensor 

0 – 
50°C 

UART, 
Modbus 
protocol 

4.5-
5.25V 

5 for 
$211
.05  
 

Non-dispersive infrared (NDIR) 
principle. Signals alarm output. 
 
CO2 400–2000ppm. Can go up to 
10,000ppm in extended range 
 

AS-MLV-P2 
Air Quality 
Sensor 

up to 
300°C 

Analog 
output, 
requires 
ADC 

3V 5 for 
$84 

Sensitive to humidity changes and 
temperature changes. 
 
CO, butane, methane, ethanol, 
hydrogen from 0 to 6000 ppm 

Multi-gas, 
humidity 
and 
temperatur
e sensor 
combo 
module 
 

5 - 
55°C 

Digital 
I2C 
interface 

5V 10 
for 
$20 

Measures indoor air quality 
parameters total VOC (tVOC), CO2-
equivalent (CO2eq), relative 
humidity RH and temperature. 
a typical accuracy of ±5 %RH and 
±1°C. 
 
Gasses: 0 – 60000ppm 
Humidity: 0 to 100 %RH 
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Temperature: –20 to 85 °C 

Sparkfun 
Gas 
Sensors 

5 - 
55°C 

Resistor 
to 
Analog 
to Digital 
conversi
on 
needed. 

5V 7 for 
$30 

Alcohol, LPG, Methane, Carbon 
Monoxide, Hydrogen. 
 
Gas concentrations 200 to 
10000ppm. 

Gravity: 
Analog 
Gas 
Sensor 
(MQ2) 

20℃-

50℃ 

Analog 
output 

 $6.9 
for 1. 

Application gas leakage detecting 
equipment in family and industry, 
are suitable for detecting of LPG, i-
butane, propane, methane, alcohol, 
hydrogen, smoke. 

Renesas 
Gas 
Sensor 
Module for 
TVOC and 
Indoor Air 
Quality 
 

Up to 
300 ℃ 
 

I2C  10 
for 
$83 

Detecting total volatile organic 
compounds (TVOC) and monitoring 
indoor air quality (IAQ) in different 
use cases. 
 
Measurement range: 200ppm-
5000ppm LPG and propane 
300ppm-5000ppm butane 
5000ppm-20000ppm methane 
300ppm-5000ppm H2 100ppm-
2000ppm Alcohol 
 

Adafruit 
MiCS5524 
CO, 
Alcohol 
and VOC 
Gas 
Sensor 
Breakout 
 

Up to 
80℃ 

Output is 
a 
resistan
ce, 
analog 
voltage 
proportio
nal to 
gasses 
detected 

5 V 1 for 
$20. 

Output does not identify gas 
detected. 
 
CO (~ 1 to 1000 ppm), Ammonia (~ 
1 to 500 ppm), Ethanol (~ 10 to 500 
ppm), H2 (~ 1 - 1000 ppm), and 
Methane/Propane/Iso-Butane (~ 
1,000++ ppm) 

Adafruit 
BME680 - 
Temperatu
re, 
Humidity, 
Pressure 
and Gas 
Sensor 
 

Up to 
80℃ 

SPI or 
I2C 

 1 for 
$22. 

Temperature, humidity, barometric 
pressure, and VOC gas. Must be 
calibrated. Detect gasses & 
alcohols such as Ethanol, Alcohol 
and Carbon.  
Must be calibrated 
 
Humidity with ±3% accuracy, 
barometric pressure with ±1 hPa 
absolute accuracy, and temperature 
with ±1.0°C accuracy. 



50 

 

 
Selected sensor: 
In the end, the Adafruit BME680 was chosen since it is a 4 in 1 sensor that provides 
temperature, humidity, pressure, and gas measurements. It used an I2C protocol and 
requires a supply voltage of 3.3V to 5V. The sensor also had an IIR filter that is used for 
temperature compensation and to provide accurate measurements for gas, temperature, 
humidity, and pressure. The cost of the sensor also falls within a reasonable range.  
 

Table 8: Smoke Sensors 

Sensor Op. 
temp. 

Op.  
Voltage 

Output Cost Notes 

CMOS 
Photoelectric 
Smoke 
Detector 
ASIC with 
Interconnect 
 

-25°C 
to 
75°C 

12V Output 
local 
alarm 
 

25 for 
$17 

An internal oscillator strobes 
power to the smoke detection 
circuitry for 100us every 8.1 
seconds to keep standby 
current to a minimum.  
 
If smoke is sensed the 
detection rate is increased to 
verify an alarm condition. A 
high gain mode is available for 
push button chamber testing.  
 

CMOS 
Ionization 
Smoke 
Detector 
ASIC with 
R&E 
International 
Interconnect 
and Timer 
Mode 
 

-10 to 
60°C 

15V Output: 
local 
alarm 
 

25 for 
$16.50 
 

The smoke comparator 
compares the ionization 
chamber voltage to a voltage 
derived from a resistor divider 
across VDD.  
 
This divider voltage is available 
externally on pin 13 (VSEN). 
When smoke is detected this 
voltage is internally increased 
by 130mV nominal to provide 
hysteresis and make the 
detector less sensitive to false 
triggering. 
 

CMOS Low 
Voltage 
Photoelectric 
Smoke 
Detector 
ASIC with 
Interconnect 

-10 to 
+60°C 

5V Output 
signal: 
local 
alarm 
 

25 for 
$27.25 
 

The RE46C190 is a low power, 
low voltage CMOS 
photoelectric type smoke 
detector IC. With minimal 
external components, this 
circuit will provide all the 
required features for a 
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and Timer 
Mode 
 

photoelectric-type smoke 
detector 
 

PIM-438 
Smoker 
sensor (and 
oximeter) 

-45 to 
80°C 

3 – 5V I2C $16.30 Uses the MAX30105 module 
and is used for heart rate, 
oximeter, smoke sensor. 

 

Selected Sensor: 
In the end the PIM-438 was used for smoke detection. This sensor has 3 LEDs (Red, 
Infra-Red (IR), Green), a photodiode, and an analog front end. The sensor uses the 
photoelectric principle to detect smoke. The sensor uses infrared light (invisible to the 
human eye) to check for the presence of airborne particles and the visible light to confirm 
whether the particles are smoke. The sensor also fits the requirements for cost, voltage 
supply, and signal protocol. 
 
 
Table 9: Flame Sensors 

Name Op. 
Temp. 

Op. 
Volta
ge 

Comm. 
Protocol / 
Output 

Cost Notes 

ezPyroTM I2C 
Pyroelectric 
Infrared Flame 
Sensor (SMD) 
 

-40 to 
+ 85°C 

2.7 - 
8V 

I2C 1 for 
$33.45 
 

Thin film digital pyroelectric 
IR sensors. 
Full frequency range of 
flame flicker (3-30 Hz).  
 
 

Thin Film 
Pyroelectric 
Flame Sensor 
 

-40 to 
+85 °C 

2.7 - 
8V 

Analog 
output 
 

1 for 
$56 
 

Noise at the signature 8-10 
Hz flicker range of a flame 
Aperture: 5.2 mm x 4.2 mm 
A wide field of view of 
typically 100° 
 
 

QFC 
Pyroelectric 
Infrared Flame 
Sensors, 
Analog 
 

−40 to 
+85°C 

2.7 - 
8V 

Analog 
output 
 

1 for 
$73.76  
 

In triple IR flame detection 
Noise characteristic at the 
signature 8 – 10 Hz flicker 
range of a flame. Used for 
forest protection. Wide field 
of view, typically 100° 
 

KEMET’s QFS 
pyroelectric 
flame sensors 
 

 1.75 
– 
3.6V 

I2C 1 for 
$24.82 

High dynamic range to 
ensure rapid and accurate 
detection of small and large 
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flames, nearby or over larger 
distances.  
Full frequency range of 
flame flicker from 3 – 30 Hz. 
90° field view 

Analog’s 
ADPD2140BCP
ZN-R7 
photodiode 
 

-40 to 
85 °C 

8V I2C  
 

1 for 
$2.47 

Near Infrared Sensor: IR 
array primarily used to 
detect for infrared rays 
Spectral range from 800nm - 
1080nm 
 
Compatible with the 
ADPD1080 photometric 
front end. 

Adafruit 
AMG8833 8x8 
Thermal 
Camera Sensor 
 

Measu
ring 
temps 
of 0°C 
to 
80°C  

3V or 
5V 
micro
contr
oller 
or 
comp
uter. 

 1 for 
$39.95 

8x8 array of IR thermal 
sensors. 
64 individual infrared 
temperature readings over 
I2C. Detect a human from a 
distance of up to 7 meters 
(23) feet. 

Adafruit 
MLX90640 
24x32 IR 
Thermal 
Camera 
Breakout - 110 
Degree FoV 
 

Measu
ring -
40°C 
to 
300°C 

3V or 
5V 
micro
contr
oller 

I2C 1 for 
$59.95 

24x32 array of IR thermal 
sensors. 110°x70° field of 
view 
 

Melexis 
Technology 
MLX90640 
thermal camera 
 

-40°C 
to 
85°C 

2.9V 
to 
3.6V 

I2C 1 for 
$39.95 

32X24 IR array of pixels. 2 
FOV options – 55°x35° and 
110°x75° 

 
Selected sensor:  
The Pyreos EPY12241 pyroelectric sensor was chosen for flame detection. Some of the 
characteristics of this sensor include: Output sensitivity, Signal to noise ratio, Noise 
equivalent power, Specific sensitivity, and Response time. The user is able to adjust the 
low pass filter, high pass filter, sample rate, capacitance (gain), and trans-impendence. 
The sensor also fits the requirement for voltage supply, signal protocol, and cost. 
  

4.3.4. Software Tools 
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Software tools play an important role in the development of a working system. This section 
discusses the different tools utilized to design, develop, or prepare the system. All of the 
software used for the purpose of development will be listed here like CAD programs, 
Administrative tools, chat applications, and software development tools. 
 

4.3.5.1 CAD Tools 
 
Contained in this section are some of the CAD tools used for this project. CAD tools were 
used for the mechanical design of the structure of the project as well as the PCB and 
schematic design for the electrical components of the project. 
 
Fusion 360 
Fusion 360 Student Edition was used to CAD and render the four preliminary mechanical 
designs for this project and the final design. Without mechanical designs for the project, 
the system will not function correctly. The mechanical design is almost as important as 
the electrical design for this project as the system must operate and exist outdoors with 
varying weather conditions and other hazards. Fusion 360 can design parts that might 
need to be 3D printed or machined. 
 
KiCAD 
KiCAD is used to make the schematics as it is open source, free, and provides all the 
tools needed to create any PCBs. Schematics are an important part to the development 
process as many bugs and errors are found at this stage and designed out of the system. 
Without schematic software, these problems may manifest into larger problems when the 
design is put to the test in real life. Furthermore, once money is spent on a faulty design 
it cannot be recovered. It is essential that designs be worked out before moving from the 
schematic stage. The program then allows the conversion from schematic to PCB Layout. 
The data can be sent to a manufacturing facility and they will manufacture the PCBs for 
the project. Lastly, the program allows the creation and modification of schematic symbols 
and footprints as well as the ability to import them from vendors or distributors that sell 
the products. 

 

4.3.5.2 Administrative Tools 
 
Contained in this section are some of the administrative tools used for this project. 
Administrative tools are any application that helps in the creation of documentation, 
communication, or organization including, but not limited to, file storage on a computer. 
 
WhatsApp 
WhatsApp was chosen as the tool for general communication. It is simple and does not 
have many integrations as some other chat applications, but it is lightweight and allows 
for chatting from a computer or smartphone. This means that the team can always 
communicate if necessary. It does not have any limits on file or image uploads as other 
chat applications may have. Furthermore, most of the team already had the application, 
so it was a quicker way to get started than learning or downloading a new application. 
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Microsoft Teams 
Teams is another communication tool chosen to have meetings online. It provides 
conference calls, video calls, screen sharing, and file sharing to help organize and meet 
up in an efficient way. It is also accessible through phone and computer which allows the 
team to communicate easily at any time. The screen sharing feature lets the team 
communicate and share instructions and work effectively during meetings. It also provides 
messaging and filing system to keep work organized if needed. It can access calendar 
information by logging in using UCF knights’ email. Since it is accessible by using knights’ 
email, each member of the team has an account already created. Given the COVID-19 
limitations, Microsoft teams was useful for team meetings and maintaining productivity 
despite social distancing. 
 
 
 
Trello 
Trello allows for task planning and scheduling so that the team knows what project 
component is due and when. This also allows each group member to schedule individual 
parts of the project, so the big picture is always in sight. The many integrations of Trello 
allow the team to do almost anything. Currently, Calendar integration is used so that it 
formats all the deliverable due dates into a calendar so that everything can be found 
quickly and easily. There is no confusion on when a deliverable is due.  
 
Microsoft OneDrive 
OneDrive is a good place for the team to easily share files together. The ease of 
OneDrive, compared to other tools like Google Drive, is that OneDrive will sync files from 
the cloud to any computer directly. This means files can be edited and 
uploaded/downloaded directly from the file explorer. No need for a browser or external 
tool. The expansiveness of OneDrive also allows synchronization to smart phones to view 
documents on the fly. 
 
Microsoft Word 
Since the team is relying on OneDrive, it became clear that using Microsoft office tools to 
work on documentation is a good choice. Word features a very comprehensive (but 
expansive) collaboration element so that work on a document can be accomplished 
simultaneously with all the power of offline editing. All the standard formatting tools exist, 
but in addition to that comments can be added, and collaborative chat exists with users 
currently editing a document. 
 

4.3.5.3 Software Development Tools 
 
Git 
Git is the de-facto tool for version control across software projects. Git works by tracking 
changes byte-by-byte to files within a directory. This is useful when multiple users are 
editing a file at the same time. The way Git structures itself is by using “branches” which 
a user will “checkout” to. When checking out to a branch, the user creates a local copy of 
the files stored/tracked in the remote repository of code. The code that is changed locally 



55 

 

on the user’s computer is not the same as the code that is in the remote repository. This 
is useful as the user can make any changes they want.  
 
If another user wants to make changes to the same file, they clone those changes which 
allows them to work on the same file, unencumbered. When these two users complete 
their modifications, they will “commit” and “push” these changes to the remote repository, 
allowing their changes to become public and Git will automatically “merge” the changes 
into the current working branch. As long as there are no conflicts, the changes are 
accepted and saved in the remote repository. If there are conflicts (i.e. modifications to 
the same place in the file) then the users must manually accept and merge those changes 
that are correct. Git can be used to track binary files, but any change to the file usually 
results in a large change across each byte of the file thus causing the whole file to be 
updated. 
 
Atmel Studio 7 
Atmel Studio 7 is the IDE that is suggested to be used with the SAMR35. It includes a C 
and C++ compiler for the microcontroller, and so it was used for programming, debugging, 
and writing code for the SAMR35. Atmel Studio 7 features a programmer which is 
beneficial since the compiler, code editor, debugger, and programmer are all in one 
software package.  
 
Python 
Python is one of the most popular programming languages known for its ease of use. It 
has a simpler syntax and format compared to other languages such as C or Java. It is the 
main language used in recent computer vision applications and offers abundant libraries 
for implementing them into the project. Other well-known libraries such as OpenCV and 
Pytorch uses Python to implement computer vision. Most of the CNN (Convolutional 
Neural Network) models are trained and available in Python via GitHub. Tutorials and 
other guidance are available due to its popularity which will help in debugging and 
constructing the code. It is easy to learn which will save time and improve our system 
further. 
 
C++ 
C and C++ are the standard languages used in embedded programming. As such, C++ 
was investigated to be used to program the SAMR35. C++ has a lot of features and syntax 
taken from the C language but allows for classes and data structures to be built and used 
from the standard library that C does not. This means that it could have been easier to 
maintain the software written, and it should be easier to implement.  
C always followed the paradigm that nothing should be hidden and that it should have the 
simplest features so that the programmer is the one to implement all of the functionality. 
C++ Follows the paradigm of “C is a good foundation, but we can do better” and allows 
for a lot of expanded functionality that the C language does not provide. Other 
technologies like Rust were investigated, but C++ is a good mix between object-oriented 
software principles and embedded systems. In the end, however, C was used to program 
the SAMR35 since it was faster to get up and running. Due to issues with implementing 
LoRa, using C++ was not advisable as it took more time to learn and debug. 
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Atom 
Atom is a simple text editor that provides syntax highlighting for different programming 
languages and formats. It also includes a markdown viewer. Some of the software and 
text documents were edited in Atom since Atom provides a lot of plugins for productivity.  
 
Putty 
Putty is a terminal emulator and serial console that allows for quick and easy connection 
to serial devices. When communicating with a device over UART, especially for 
debugging purposes, Putty became invaluable. Since it is a free and open source 
program, it was easy to get running and didn’t cost a penny. Putty supports many different 
communication protocols other than serial communication like Raw, Telnet, Rlogin, and 
SSH. Using a Raspberry Pi, it was useful to use the serial console through the UART pins 
of the Raspberry Pi and the Raspberry Pi Zero W could use SSH to communicate with it 
via Wi-Fi, assuming we are using windows computers and may not have the ability to 
SSH through a terminal. 
 
MobaXTerm 
MobaXterm was used in addition to putty. It provides a nicer interface for serial and ssh 
connections and also allows users to save sessions so that information like baud rate or 
parity does not need to be entered in subsequent connections to the same device. 
 

4.4. LoRa 
 
This section covers the methodologies and lower level implementation of the LoRa 
modulation scheme.  
 

4.4.1. LoRa Overview and Definition of IoT 
 
A current “Buzz Word” all over the world is “IoT.” IoT stands for Internet of Things. A 
“Thing” in IoT Is some kind of device that is able to sense information about the 
environment in which it is placed and transfer that data over a network. IoT devices share 
their data by connecting to an IoT gateway or other edge device where the data is sent 
to the cloud to be analyzed [41].  This connection together creates better understanding 
as the data that is collected can be interpreted in many different ways. The ways it is 
interpreted defines what kind of information someone can learn from that data. 
 
LoRa, literally “Long Range”, is a proprietary spread spectrum modulation scheme that is 
derivative of Chirp Spread Spectrum modulation (CSS) which trades data rate for 
sensitivity within a fixed channel bandwidth [42]. The idea is create a physical layer 
protocol that is separate from higher layer implementations which allow the protocol to be 
generically used with new and existing devices.  
LoRa is bandwidth scalable, low power, and long range modulation technique. It allows a 
very large link budget that exceeds conventional FSK [42].  
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4.4.2. Quick Discussion of Common Modulation Techniques 
 
Modulation is the act of changing a carrier signal to transmit information. A Modulator will 
turn digital data into an analog wireless waveform and a Demodulator will take the 
wireless waveform and convert it back to a digital signal. The goal is to convert this digital 
signal into something that can be sent wirelessly without interference to some other 
device amidst all the electromagnetic signals currently in the air. 
 
This section quickly covers the three prominent modulation techniques. Modulation 
techniques as a whole are not limited to these three and may, in fact, incorporate multiple 
different schemes or modifications on these schemes to enhance different features of 
their wireless network. This section does not compare or contrast the different methods 
and does not explain the advantages of each, only the different methodologies as a whole 
to understand LoRa and how its modification on Chirp Spread Spectrum Modulation is 
relevant. 
 
 
Amplitude Shift Keying 
Amplitude Shift Keying (ASK) works on the principle that a digital 1 map to the presence 
of a signal at some amplitude while a digital 0 maps to the absence of that signal. A device 
can send a binary symbol by changing the order of presence to absence of this signal. A 
simple view of this technique is for every digital “1” that the device sends, it turns a signal 
on and for every digital “0” the device sends, it turns the signal off. 
 
Frequency Shift Keying 
A popular modulation technique. Similar to the above, Frequency Shift Keying (FSK) 
works on the principle that the two digital states are represented by a constant signal that 
varies in frequency. By changing between a high frequency signal to a lower frequency 
signal, the device can transmit a 0 or 1. 
 
Phase Shift Keying 
The device, in Phase Shift Keying (PSK), will alter the phase of a signal when trying to 
transmit information. For example, the signal might be at some frequency constantly, but 
if it is a positive signal it might mean a digital “0” but when changed to the negative 
waveform of that signal it means a digital “1”.  
 

4.4.3. Chirp Spread Spectrum Modulation (CSS) & LoRa 
 
LoRa uses a modified version of Chirp Spread Spectrum Modulation (CSS). Chirp Spread 
Spectrum was developed for radar applications in the 1940’s [42]. It has become more 
popular recently as it is low power and great sensitivity. Unlike other modulation 
techniques, it seems to have the inherent ability to resist multipath fading, Doppler effects, 
and interference in the same bands. The idea is that a “chirp” has a constant amplitude 
but the frequency passes through the entire bandwidth in a certain time. If the frequency 
increases it’s called an “up-chirp” and if the frequency changes from highest to lowest it 
is considered a “down-chirp” [43]. 
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The alteration between up-chirps and down-chirps create the symbols for LoRa.  
 

 
Figure  34: Spectrogram of LoRa physical layer [43] 

The image above shows a LoRa frame on the physical layer. The frame consists of 8 
preamble symbols, 2 synchronization symbols, the physical payload, and an optional 
CRC. The symbols are demodulated as 0’s and 1’s which cat be any kind of packet as 
defined by the project.  
 
Lastly, an interesting feature of LoRa is the ability to change the Symbol Rate. By 
changing the “spreading factor” used in the LoRa implementation, the device can change 
the properties of the signal. LoRa uses three different bandwidths: 125kHz, 250kHz, and 
500kHz. As a quick overview of all of this, incrementing the spreading factor by 1 roughly 
doubles the time to send the symbol. Therefore, a lower spreading factor results in a 
higher data rate and a higher spreading factor results in a longer transmission. Since 
there is this relationship, the Symbol Rate can be defined as this relationship here: 
 
 

𝑆𝑦𝑚𝑏𝑜𝑙 𝑅𝑎𝑡𝑒 =
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

2𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟
 

 
 
This means the device should use a higher bandwidth and lower spreading factor to get 
the highest symbol rate. Doing so, however may affect the power consumption during 
transmission since time to transmit increases and/or different parts of the internal circuit 
may be active at different intervals. 

5. Design 
 
This section is a high-level overview of the fire detection system. In this section, there is 
an overview of the major function blocks, the use cases, and descriptions of the hardware 
and software sub-systems. The design should take components from all the previous 
sections as well as considering our design goals and motivation to create the final product. 
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5.1. Use Cases 
 
The system, for all intents and purposes, acts autonomous but users still must interact 
with the system for the goal of the project to be successful. These uses are shown in the 
following sections. 
 

5.1.1. Uses Case Diagram 
 
Figure  35:  below contains the use case for the fire detection system. There are three 
uses for the system: the Firewatch Official, the Installer, and a Networked Device. All 
three of these users will have to interact with the system. 
 

 
Figure  35: Use Case Diagram 

 

5.1.2. Functional Design 
 
The system is designed so that a fire watch official can check notifications from the 
system. These notifications will detail information about the mesh network and the 
individual devices connected to it. The fire-watch official can do no more than check the 
notifications and ignore them if he chooses. The Networked Devices and Installation 
personnel are the only users who may send notifications throughout the mesh network. 
The Installer connects a device to the network by putting the batteries in the device. At 
that moment, the device sends a join notification through the network. Before it becomes 
a “networked device” the node must join the network and the installer can reset the node 
until it joins. A Networked Device will evaluate the sensor and network data and choose 
to pass that notification to the mesh network if it meets certain criteria 
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5.2. Hardware Design 
 
The hardware design refers to the electrical hardware that is present within the system. 
The hardware must work autonomously with very few failures at all times (day and night) 
to align with the project’s design goals and motivations. 
 

5.2.1. Hardware Block Diagram 
 
The following diagram shows the hardware design sub-systems. There are four major 
subsystems. The top row of blocks shows the power sub-system. This subsystem is 
comprised of the solar panels, battery charging, and battery protection. This filters down 
into power regulation to create the specific power rails necessary to power the sensors, 
controllers, and the RF circuit. The three other subsystems comprise of the Sensor 
circuits, the Sensor control and processing, and the Network control and processing. 
These parts of the circuit are dominated by software instead of electrical considerations. 
If the serial communication circuits and power circuits are fine-tuned, these 3 subsystems 
will work well. The antenna and RF design must have care taken as RF antenna design 
must follow specific rules.  
In the block diagram, there are some grey blocks that were not completed. This is due to 
difficulties with the LoRa technologies that will be explained in later sections. In short, the 
network and sensor processing controller was combined into one device (the Raspberry 
Pi) and the RF circuit was no longer used. 

 

 
Figure  36: Hardware Design Block Diagram 
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5.2.2. Microcontroller and Processing Device 
 
The system’s original goal was to make use of two processing devices/controllers. The 
SAMR35 and the Raspberry Pi Zero. These two devices allow for much simpler 
interfacing and separation of responsibilities for the system. This also allows power 
consumption to be at a minimum during down time but the simplicity of programming for 
up time. The SAMR35’s responsibilities include the Network control and processing. It 
should handle communications within the LoRa network and the connection to the 
network. The Raspberry Pi Zero conducts the sensor readings and return its confidence 
of how likely a fire is present in the local area. The root node must contain hardware to 
receive LoRa transmissions and software to process root node packets, but once it 
retrieves the data out of the network, any device can be used (such as another embedded 
system or a standalone computer). The SAMR35 internally uses the SX1276 Low Power 
Long Range Transceiver. This module incorporates an FSK modem and a LoRa modem.  
The device can operate in the 137MHz to 1020MHz range and is compliant with 
IEEE802.15.4g. Since this module is built in to the SAMR35, it does not have to be a 
standalone device.  
 
In the end product, however, the SAMR35 presented some interesting design challenges 
that had to be overcome to produce a working prototype. The SAMR35 is a BGA Package 
which means without an x-ray device, the quality of the solder joints could not be 
confirmed. It is possible that some of the difficulties of implementing the design come from 
this. Another difficult part to implementing the SAMR35 is how new it is. There are a lot 
of resources for LoRaWAN, a MAC layer protocol built on top of LoRa. There are not 
many resources for just LoRa and the SAMR35. This meant that, to get a working product, 
a standalone SX127x chip was used to conduct LoRa transmissions. This chip was 
connected to the Raspberry Pi only, and the SAMR35 was not used for network 
transmissions.  
 

5.2.3. Hardware Schematics 
 
The following sections are descriptions and diagrams of the hardware schematics for the 
project. There are 4 sub-systems regarding hardware: Network, Raspberry Pi, Sensor, 
and Power. These 4 sub-systems must work together to do the final goal of detecting a 
fire. 
 
 
 
 
 
 
 
 

5.2.3.1. Preliminary RF/Network Sub System Schematics 
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Figure  37: RF Switch Schematic 

 
The schematic above in Figure  37:  handles switching the RF signals so that the device 
can use a single antenna. In RX mode, the circuit is slightly different in the way it filters 
the signal than in TX mode. The device has two separate circuits on the TX side to select 
between different bands and power usages. The selection of the band is determined by 
the SAMR35. The schematic for the SAMR35 in Figure  38: Figure  37:  is only the 
SAMR35 and its immediate connections. Most of the filtering hardware is removed for 
simplicity. Its UART ports are routed to the Raspberry Pi. Everything must be 50-Ohm 
impedance matched for the RF circuit. A Software defined status LED was given to the 
SAMR35 as well. 

 
Figure  38: SAMR35 Schematic 
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Lastly, in Figure  39:  there are some oscillators and buttons added for the SAMR35 to 
make it easier to use the device. The connector for programming and debugging was 
also necessary to include. 
 

 
Figure  39: SAMR35 Peripheral Components 

 

5.2.3.2. Preliminary Raspberry Pi System Schematics 
 
The Raspberry Pi ended up doing a lot of the work. In the end prototype, the Raspberry 
Pi connected to the SAMR35 only through the TX/RX UART pins, however the SPI 
connections were used to talk to a standalone SX127x component to handle LoRa 
communication. An I2C bus allowed it to easily collect data from all the sensors. The 
connections are shown in Figure  40: . Ideally, the Raspberry pi is turned off most of the 
time and will be powered up only when it needs to do a sensor reading. For the final 
product the Raspberry Pi was powered ON during the entire operation of the device. The 
power consumption was more of an issue then but was not detrimental to the 
requirements. The Raspberry Pi also was given a software defined status LED. 
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Figure  40: Raspberry Pi Connection Preliminary Schematic 

Another important part of the Raspberry Pi circuit is how the Raspberry Pi turns on. The 
circuit is shown in Figure  41: . The Relay is connected to the SAMR35 and it is able to 
turn on and off the raspberry pi. In the final prototype, the SAMR35 immediately turns on 
the Raspberry Pi and does not turn it off. This is because the SAMR35 became redundant 
but required to turn on the Raspberry Pi unless the device had a pull-up wire soldered 
onto the PCB. 

 
Figure  41: Raspberry Pi Relay Power Circuit 

 

5.2.3.3. Preliminary Power System Schematics 
 

The device is powered with a solar panel that is routed to an LT3652 IC. The 12v panels 
keep the charging IC constantly running at the most efficient state. To maintain a constant 
output the right solar panel is needed for the system. 
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Figure  42: Voltage Regulator Schematic 

 
The solar panel must output 12 volts nominally to supply the regulator and must have 
redundancies to help handle the changing solar radiation levels throughout the day. For 
this reason, two panels in parallel with many cells in series is needed to help with these 
issues. A panel similar in design to the one in Figure  43 is needed for this project. A panel 
like this has many cells linked up in series and then those sets of cells are then paralleled 
to prevent one cell getting covered or one cell breaking causing the entire panel to go bad 
and stop supplying power to the system. 

 

 
Figure  43: Top View Solar Panels 

 

5.2.3.4. Sensor Circuit Schematics 
 
This section provides an overview of the sensor schematics for gas, smoke, and flame 
detection.  
 
Gas Sensor 
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The BME680 by BOSCH can detect ambient temperature, humidity, and barometric 
pressure and, most importantly, a range of gasses such volatile organic compounds. The 
sensor is also able to provide the air quality using an index provided below. This gas 
sensor can use both I2C and SPI communication protocols. However, for the schematic 
above was designed to select I2C.  

Figure  44: Gas Sensor Connector 

 
The sensor can detect a range of b-VOCs such as Ethane, Isoprene, Ethanol, Acetone, 
and Carbon Monoxide. The output includes raw pressure, raw temperature, raw relative 
humidity, raw gas resistance, sensor-compensated temperature in Celsius, sensor-
compensated relative humidity (%), sensor compensated gas resistance (Ohm), Index for 
Air Quality, CO2 equivalent in ppm, b-VOC (ppm), accuracy status of IAQ, gas 
percentage based on the individual sensor history, as well operational parameters such 
as stabilization time status and run in status.   

 
Figure  45: Air Quality Table [44] 

 
Due to COVID-19, there were limitations on tools and resources and restricted access to 
the senior design laboratory, the Adafruit BME680 board was used to integrate the 
BME680 chip to the final PCB. 
 
Smoke Sensor 
Initially, the Microchip technology RE46C190S16TF was intended to be used for smoke 
detection. The design includes a photo amplifier to use with an infrared emitter/detector 
in pin 3 (Detect). The internal oscillator allows for smoke detection to occur for 100us 
every 8.1 seconds; this helps to minimize standby current. When smoke is sensed, the 
detection rate is increased for verification purposes. Every 32 seconds, the device checks 
for low battery and chamber integrity. The smoke chamber is located between pin 3 and 
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6 and is illustrated below. The internal comparator compares the photo-amp’s output to 
an internal reference voltage. When the smoke conditions are met, the device triggers the 
local alarm. Below is the schematic of the sensor.  

 

Figure  46: Smoke Sensor Schematic 

 
Due to COVID-19, there were limitations on tools and resources and restricted access to 
the senior design laboratory, the PIM-438 board was used for smoke detection instead. 
This sensor also used the photoelectric principle to detect the presence of smoke. The 
algorithm uses infrared light (invisible to the human eye) to check for the presence of 
airborne particles and the visible light to confirm whether the particles are smoke. The 
sensor also works in high ambient light, complete darkness, or artificial light. This sensor 
was soldered onto the 3.3V, SCL, SDA, and GND pins of the PCB. 
 
Flame Sensor 
The flame sensor that was initially intended to use was the EPY12241 SMD chip. 
However due to COVID-19 there were limitations on tools and resources and restricted 
access to the senior design laboratory. Instead the breakout board for this chip was used 
instead. There are five key characteristics to consider when using pyroelectric infrared 
detector: output sensitivity that depends on narrow infrared band, signal to noise ratio, 
noise equivalent power (NEP), specific detectivity (D*), and response time [45]. The 
output sensitivity, D*, SNR, and NEP are dictated by the manufacturer in the module 
design. The user, however, has the ability to choose the electrical response time by 
adjusting the impendence and capacitance as well as setting the high pass and low pas 
filter values and the sample rate of the filter. [46] This sensor will be useful in identifying 
flames in low light, such as at the nighttime. To use in the daytime, it must be paired with 
PYREOS’ sunlight-rejection sensor. 
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Figure  47: EPY12241 SMD chip 

 
 
 

 
Figure  48: Flame Sensor Schematic 

 

5.2.4. Mechanical Design 
 
The following mechanical designs are potential ideas on how the system will be mounted. 
The designs each have 2 components: The mounting apparatus and the system 
functional area. The functional area, for these preliminary designs is represented by a 3D 
cube. The estimated size of this area is a volume of only 15 by 15 by 15 centimeters. The 
3D cube is meant as a guide to see the area in which we expect the structure of the 
system to occupy, it is not necessarily to scale. The system was designed in such a way 
that it is mounted to a tree or other tall structure. The first design in Figure 49 simply gets 
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mounted to the side of the structure. It has 6 screw holes to allow for mounting.  And is 
the simplest and quickest to install. This works great for a small system and large trees 
as the tree’s trunk will appear as a flat surface at small scales.  

 
Figure  49: Mechanical Design A 

 
The second design, shown in Figure 50, has a large loop that gets wrapped around 
something that would fasten the system to a tree. This could be the trunk of the tree or a 
branch. It is simple in design and would be easy to install as it just requires one point to 
lock the mechanism to the surface. A downside to this design would present itself for trees 
or branches with a large radius as the band would have to be large enough to support the 
device. This design is scalable with almost any size of the system, big or small. 
 

 
Figure  50: Mechanical Design B 
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The design idea represented in Figure 51 would get clamped around a tree branch high 
in the tree. It is not designed to be clamped around the trunk of a tree. This design would 
be attached by clamping the bottom part to a branch like a claw. A difficulty of installation 
might appear when trying to install the system in a high/tall structure and mounting it 
vertically. Due to the longer arm on the design, it creates a stronger moment of inertia 
and could prove difficult to implement with a heavy device. 

 

Figure  51: Mechanical Design C 

 
Finally, the last design shown in Figure 52 is hung on a tree branch or other horizontal 
structure. This is a great design for simplicity. It allows the installer to simply hang the 
device wherever it needs to be. For quick/temporary deployments it might be the best 
solution. For long term deployments, this solution may need some form of bracket or 
screws to be inserted to lock the device to its structure so uncontrolled scenarios like 
weather or animals cannot move or knock the device off its structure. 

 
Figure  52: Mechanical Design D 
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5.2.4.1. Final Design  
 
The final design, shown below, is one that was optimized for 3D printing for the purpose 
of rapid prototyping. It took 26 hours to print this design in its entirety, but it was perfect 
for prototyping as it proved that the design had plenty of room for cable management and 
showed some flaws that wouldn’t have been caught otherwise. Flaws such as low airflow 
in the container when assembled which could be remedied by a simple one inch by one 
inch five-volt PC fan. The design could also be optimized by having a ‘tunnel’ through one 
side of the box which the gas sensor and smoke sensor could be mounted in and a push-
pull fan configuration could be mounted to each end of this tunnel to pull fresh air across 
these two sensors for better readings. 
 
 

 
Figure  53: Final Design (open)  Figure  54: Final Design (closed) 

 

5.3. Software Design 
 
Similar to the hardware design, the software design must be as reliable as possible and 
have minimal failures. When a failure occurs, it must also be able to correct for those 
failures or allow for itself to be ignored or disabled until a time when it can be replaced. 
The following sections discuss the software designs and the methodology in place to let 
the controllers do their job. 
 
Note: In Section 5.3 Software Design, all software functionality designed for the Network 
controller has been moved to the Raspberry Pi and the SX127x chip used for LoRa. Due 
to implementation difficulties the Network software was never implemented on the 
SAMR35, only the Raspberry Pi. The sections below may reference the “network 
controller” or SAMR35 and that is to be understood to have become the Raspberry Pi for 
the prototype implemented in Senior Design 2. 
 

5.3.1. Design Methodology 
 
The original design methodology implemented for this project is to keep every function 
compartmentalized to its own controller. There are two controllers: Sensors/Fire detection 
and Network. The Network controller’s job is to join and manage its connection to the 
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network while the sensor controller’s job is only to read all the sensors and determine if 
there is a fire.  

 
This idea of keeping the functionality partitioned among the hardware allows for simpler 
software to be written and for the system to use the least amount of power possible during 
idle. The only interaction between these two controllers is the sensors controller sending 
a notification to the network controller that there is a fire, and possibly a small message 
string to send along with it. It is possible that other binary data is sent (such as raw data) 
and so the two systems will need to be able to communicate simply and effectively (such 
as through the SPI protocol or UART protocol). 

 
Network Controller: 
The network controller is responsible for making a mapping between itself and the other 
controllers already in the network. When joining a network, it will beacon a join request 
and the controllers in its vicinity will respond with linking information. This is to ensure that 
the controllers can be in the same network and to avoid duplicate packets being sent. The 
controller will then continuously listen for packets of data and will absorb packets until a 
timeout, or the sending controller decides it is done sending. 
 
At this point, the network controller will send packets to all in its network map (except for 
the sender) to attempt to get the data back to the root controller. If it hears any repeated 
packets from another controller, then it will discard them. To arbitrate between a busy 
network, random delays will be introduced to avoid controllers from responding to other 
controllers whose messages are already being sent. 
 
A second function of the network controller is to wake up the Sensor Controller, which 
should be shutdown at all times. The Sensor Controller will be woken up in 2 different 
cases: A fire has been detected or a timeout has been triggered. This is to avoid 
unnecessary power consumption. The Network Controller may or may not send a 
notification through the network that the Sensor Controller is turned on or off at any time. 
 
Sensor Controller: 
The sensor controller is to stay asleep/shutdown when not reading sensor data or 
processing the sensor data. When the Sensor Controller is complete processing its data 
it will send a shutdown notice to the Network Controller so it may configure its timers or 
send notifications to the network. The Sensor Controller will read all available sensors on 
its communication busses and read data from a camera if applicable. Using this data, it 
will decide if there is a fire in its vicinity or if there is not a fire. It will report this decision to 
the Network Controller and prepare to shut down. 
 
 
 
 
Final Design Changes: 



94 

 

In the final design, the network controller became the Raspberry Pi and the Network 
software and Sensor Software were run on the same system. To communicate between 
the two, a known file was written to or read from between the two processes. 
 

5.3.2. Software Block Diagram 
 
The software block diagram shown in Figure  55:  is the basic design that we are following 
for the full software package of the system. This diagram does not differentiate between 
the network controller or the sensor controller, so it appears as one conclusive system. 
This is how the final prototype was implemented. In the original design, the “Main Loop” 
and the Network side of the diagram is managed by the SAMR35 and the Sensor Data 
side of the diagram is managed by the Raspberry Pi. The data path between the two 
systems will be worked out as an “on chip” communication bus between the two systems. 
In the final design, the data bath between the two “systems”/processes became a known 
file in the Linux file system. 
 

 
Figure  55: Software Design Block Diagram 

 

5.3.3. Network Software 
The network software can be complex and so many diagrams were made to keep track 
of how it all works. The following sections within Section 5.3.3 discusses the Network 
Software specifically. 
 

5.3.3.1. Network Flow 
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This section describes the “Network Flow” of the system. The network, in normal 
circumstances, is not busy. Most of the traffic exists when broadcasting a message to or 
from the root node as it must propagate through the network to its destination. Figure  56:  
describes a Join Request case. 
 

 
Figure  56: Join Request flow diagram 

When a Join Request is received the currently “Not Connected Node” broadcasts a Join 
Message and all connected nodes in the vicinity respond with an acknowledgement. This 
acknowledgement is important so the previously disconnected node knows that another 
node can hear the message. After some time, the node sends a join message to the root 
node through the network to request for an acknowledgement from the root. As far as all 
the connected nodes are aware, this new node is sending messages through the network 
but has not “joined” the network. Once the “not connected” node hears the 
acknowledgement from the root node, it will consider itself “Joined” to the network and 
attempts to forward packets through the system like any other node. Furthermore, this 
acknowledgement contains the time as Unix time so the node can update its real time 
clock. A “Not Connected Node” can send messages through the network but will not 
forward messages through it. Acknowledgements are generally not required in the 
scheme, but without them, there is no way for the node to know that it is correctly 
connected to the network. This implies that a “not connected” node can still broadcast a 
fire condition but will not send packets through the network from other nodes. 
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Other kinds of messages follow similar protocols as these two messages in some way. 
Described in Section 5.3.4, a generic case is shown where a generic message is received. 
Figure  57: , below, describes a “Fire Packet” which follows a similar protocol as the 
generic case, but with some extra work. 
 

 
Figure  57: Fire Packet flow diagram 

 
When a fire is detected at a “far node”, that node sends a message to the root alerting of 
the fire to the nodes closest to it in a broadcast. These “close nodes” forward the fire 
found message to the root node. For every valid fire packet received, the node wakes up 
its sensors and begins looking for a fire to report. During this time, it will continue to 
normally forward packets as necessary. If the “close nodes” detect fires in their area as 
well, they send the “fire found” message to the root node too. To stop the network from 
getting busy, the sending nodes of a fire message will stop sending packets after some 
time. Eventually, all the nodes will stop reporting the fire continuously and will wait some 
amount of time before reporting the fire again. 
 
So far, all messages have been treated as asynchronous and can send at any time. In 
the event of a busy network or hot spot (very many nodes in a small area) then some kind 
of network arbitration is necessary.  
First, it is important to understand that each node maintains a packet buffer to store 
received messages before sending. The node holds onto these packets until it is time to 
forward them into the network. This buffer only contains packets that need to be 
transmitted, not packets that are invalid or are internally processed. This buffer needs to 
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be sufficiently sized to handle a busy network with many forwarded packets. To arbitrate 
who may send, nodes that receive packets that require transmitting a message (such as 
forwarding the message) wait a random amount of time before sending their message. 
Each node will assume that after this amount of time, they may send a packet. Receiving 
a message during this delay will increase the timer by some factor to ensure that the 
waiting node does not interrupt a current transaction. Ideally, each node maintains its own 
state such that it can forward messages without losing state while waiting for an 
acknowledgement or response. This scheme alone appears like it may work but runs the 
risk of packets never forwarding through the network if the network is busy. The packets 
will eventually be forwarded since the network will eventually go silent and packets will 
slowly trickle through the system until they all go through. In future implementations 
packets going through the system should be assigned some priority (on a first come first 
serve bases) that is supplemented by the type of packet that comes through (for example 
a “Fire Packet” might have higher priority than a “Join Request” Packet). Higher priority 
messages are sent first before lower priority messages. Lastly, messages that sit in the 
buffer longer than other messages should accrue a higher priority than their initial priority. 
This ensures that packets, eventually, get through the system. Some packets may not 
gain a higher priority past some maximum. This allows for some packets to always have 
a higher priority overall to other packets (for example a “Join Request” might always have 
a higher overall priority than binary data). 
 
The last bit of arbitration is to ignore repeated and invalid packets. Since it is a mesh 
network with different nodes receiving different messages, packets that are repeat 
packets are to be ignored by the receiving node. In this case, if multiple nodes can hear 
each other, they do not send packets in a cyclic pattern and then get stuck in a loop of 
transmissions. If a packet is received from the same origin multiple times it will be 
considered invalid and will be ignored. This invalid state persists for some time to avoid 
packets getting through cyclically. After enough time has passed for that packet, the state 
will no longer be considered invalid and a repeated packet can get through. Packets that 
come from the same sender will be allowed to pass through multiple times to allow for 
valid repeat transmissions. This means that before forwarding a packet, the node must 
check the origin of the packet and the sender. If the sender and origin are the same, or 
the origin has not been heard from before, then the packet is valid. If the packet has come 
from that origin before and the sender is different than the first sender, then the packet is 
ignored and considered invalid. This methodology, in theory, creates multiple paths from 
the origin point to the root where repeated packets are also sent along this path. The 
quickest path to the root node is the path that will prevail in transmitting the message 
along that path. In future implementations, nodes should remember where packets 
successfully arrive from and acknowledgements should get forwarded along this path. It 
is a stretch goal that the original join request and subsequent heartbeat packets 
determine this ideal path and set it up as the primary path that messages get sent along. 
This may avoid issues with clogging the network and may act as a form of load balancing 
over time. The system does not support load balancing of this form as of the final 
prototype implementation. 
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5.3.3.2. Network State Machine 
 
This section discusses the different states that the network controller has at the time of 
the final implementation. To make software easier to implement, a state machine will be 
used for the embedded software design. This state machine will allow the network 
controller to understand its state and environment and keep the code compartmentalized 
and simpler to maintain. The state diagram below shows the transitions between states.  
 

 
Figure  58: Network Control State Diagram 

The state transitions are not too complex. Structuring the software in this way allows each 
individual state to be simple code compared to complex code as well. 
The initial state is the Network state. This state handles storing all network data to non-
volatile memory if it changes and to determine if the device is in a valid network. 
“Heartbeat” packets may be sent in this state as well. Notice that there is no state for 
receiving packets on the network. This is because receiving packets will be serviced in 
an interrupt. After the Network state, the system transitions to “Waiting” which resets the 
timer to its delay time and waits before moving to the “Detection” state. 
From here, if there are packets to send then the system will do so in the “Send_Buffer” 
state. After the timer is finished, the “Detection” state is invoked. During this state, nothing 
happens. A loop will wait until the timer is done running to move on. This state waits for 
the Raspberry Pi to finish reading the sensors and to acknowledge that it has detected a 
fire. The system will wait for the Raspberry Pi to finish for an indefinite amount of time. 
After the response, the state transitions to “Send_Buffer” again to offload any forwarded 
packets and fire packets. 
 



99 

 

State Next State Transition 
Condition 

Previous State Description 

Network Waiting A network has 
been joined 

Initialization or 
Send_Buffer 

Saves Network 
State and other 
tasks Network Join No network has 

been joined yet 

Network_Join Waiting  Network Joins the 
Network 
 

Waiting Send_Buffer Timer is not 
done 

Network or 
Network Join 

Waits for timer 
to finish. 
 

Detection Timer is done 

Send_Buffer Network No more 
packets or 
Timeout 

Waiting or 
Detection 

Send packets 
from the packet 
buffer 

Send_Buffer Packets to 
send 

Detection Send_Buffer  Waiting Waits for the 
raspberry pi to 
detect a fire 

Table 10: State Transitions 

5.3.4. Software Events & Flow 
This section discusses the software events and flow that happens in the system. It 
includes charts and descriptions of both parts of the software system: The SAMR35 and 
Raspberry Pi. 
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Figure  59: General software flow when power is applied to the system 

The image above is the process the system takes when power is applied to the system. 
Once the SAMR35 is ready to begin running instructions, it begins this process. First it 
must check if it has joined a network already. If it has joined a network already, then it 
skips the join process. Skipping the join processes is critical to not get stuck in the edge 
case where it can be heard by the network but cannot receive messages. In this case, it 
can still send messages even though it is not “joined” to the network. The system sends 
a join request to the network. During this time the node takes a randomly generated UID 
and will broadcast this UID to the network. An acknowledgement is expected from at least 
one network node which will confirm the UID and allow the node to attempt to send a 
packet to the root node. If an acknowledgement is received and claims that a UID is 
invalid, the system will select a new UID and try again. This is rare and shouldn’t happen. 
Once a valid acknowledgement is received, the node waits to hear the acknowledgement 
from adjacent nodes and then transmits a packet to be forwarded to the root node. As 
mentioned in the last section, it is a stretch goal at this point that the node set up some 
kind of path memory so that the network can decide on some kind of load balancing 
mechanic. Once the root node acknowledges this new node, it will be considered “joined” 
to the network and can begin forwarding messages. 
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Figure  60: Raspberry Pi Flow 

 
Once the system has been turned on and joined to a network, it begins a timer. This timer 
will be set to wait for the Raspberry Pi. Other timers may be created to monitor health of 
the system as well as sending network packets to the network. The most important timer, 
however, would be the Raspberry Pi timer. When the timer ends the network software will 
read a file written to by the sensor software. The sensor software after a timer will begin 
reading its sensors and determine if there is a fire. The Raspberry Pi saves data for the 
network software and the network software will decide whether or not to transmit the data. 
This may be control packets or requests for data. The data will be accumulated by the 
Network Software from the Raspberry Pi. The Sensor software determines if it is done 
processing or not and then will alert the Network software that it is finished. When it is 
finished, the network software will continue on.  

 
Another important aspect of the system is the actions to be taken when a message is 
received. There are many actions that could be taken based on many different parts of 
the packet that is sent to the node. All in all, there are 4 major conditions to check before 
deciding what to do with a packet. The first action is checking the CRC. If the CRC is bad, 
the packet is rejected. A stretch goal may be to send back a negative acknowledgement 
so that the packet can be re-transmitted. Otherwise the packet is rejected, and no action 
is taken. The next conditions that matter are pertinent if the message’s destination is the 
root, the current node, or if it is a join request. If it is neither of these things the packet is 
rejected. This is so the network is not clogged by forwarded packets that are unnecessary. 
From the perspective of the node, all other non-adjacent nodes are hidden. If it receives 
a message for one of those nodes, it is considered an invalid packet and ignores it. No 
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node can transmit to a node that is abstracted by one or more layer. Any node always 
knows of the root node. There is, however, a broadcast ID that a node can choose to use 
that all other nodes respond to. 
 

 
Figure  61: Known Connections Diagram – Mesh 

If the packet is a packet that must be dealt with by the receiving node, then the node will 
determine what kind of reaction is necessary. Sometimes an acknowledgement may be 
necessary and at this time the node will broadcast that acknowledgement. Special 
consideration is taken for a fire message as this message requires the system to wake 
up its sensors and check for a fire in the local area. See the figure below for more 
information on the actions to take fore messages that are received by a node. Most 
messages require some kind of transmission to be made afterwards. 
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Figure  62: Actions taken on a Message Received event 

 
The Raspberry Pi is an important part of the system as it determines if a fire exists or 
does not. From a “black box” perspective, the network controller will periodically ask “is 
there a fire to report?” and the raspberry pi responds with an answer. This is done in the 
final version by the network software reading a known file and the sensor software writing 
a confidence value to the same file. This kind of “request” structure is important as the 
network controller may have stored request packets in an internal buffer and there may 
be multiple tasks for the raspberry pi to complete when it is ready to receive requests. 
This methodology allows for multiple groups of data to be put in the network software’s 
send queue and sent, one at a time, into the network. Once the Raspberry Pi has serviced 
all the sensors, it informs the network software that it is done so the network software can 
continue. It is up to the sensor software to decide if it is finished or read sensors or do 
whatever it needs to do. The sensor software does not need to wait for the network 
software and can immediately finish whenever it decides. 

 
 

Figure  63: Raspberry Pi decision making 

 

5.3.5. Non-Volatile Storage of Configuration & Packet Buffer Loss 
 
The system stores some information in non-volatile memory to ensure that upon power 
loss all configuration items stay intact. Any machine learning, image sensing, and 
previous sensed data (with regards to detection confidence) must be saved to non-volatile 
memory prior to shut down conditions. The Network software, on the other hand, only 
saves its network map to non-volatile memory as a stretch goal. All other data is 
considered volatile and can be changed. This decision caries the implication that if the 
network is busy and power is unexpectedly removed from the network controller, all 
pending packets will be lost. These packets cannot be recovered. Ideally, however, the 
network can recover from this immediately since all nodes can forward all packets to the 



104 

 

root. In this case, a new route may be found by the network. If the network is not created 
with this in mind when installing the network, the node may not be able to transmit to any 
other nodes. Packets will be lost with no chance of recovery in this case so care should 
be taken when setting up a network. 
 

 
Figure  64: Lost Packets Diagram 

The Raspberry Pi also stores important data like the models used to detect fires since 
they will only improve over time. Therefore, current conditions must be saved in such a 
way that when power is lost, we do not lose the current state or the previous conditions. 
When the Raspberry Pi turns on it will load the data into memory and then process that 
data. 
  

5.3.6. Network Packet Types 
To transmit and understand information effectively, the system utilizes opcodes to know 
which action to take on different packets. The different packets are defined in the table 
below. The major packet types are “Fire Packets” and “Join Request” packets. Fire 
Packets contain information for the root node of whether there is a fire and at which 
location that fire may reside. This packet is forwarded to the root by other nodes in the 
mesh, however whenever a node attempts to forward a valid Fire Packet, it also will wake 
up the sensors and see if a fire is in its local area. Join Request packets are for nodes in 
the local area.  
 
Any node that hears a join request responds and lets the joining node know that it can 
hear it and that it is ready to receive messages. The other packets contain information to 
or from the root node that may be pertinent. Heartbeat Message packets are periodically 
sent out by nodes that are only read by nodes in the local area. The heartbeat may receive 
an acknowledgement so that the sender knows it is still in the network and can decide 
which nodes are ideal to send to, as a stretch goal. If multiple heartbeats are sent out 
without responses, then the sending node may have low confidence that the nodes in its 
internal connection list are still connected. “Node Messages” Can be sent from the root 
or another node and may contain control data such as a “I’ve heard your message” 
response or acknowledgements. 
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Table 11: Packet Types 

Opcode Name Purpose 

0xA1 Fire Packet Alert that a fire has been detected. May 
contain data to describe the sensor 
readings. 

0xB1 Generic Root 
Message 

Generic message for the root node that 
may contain ASCII text as a payload. 

0xB2 Binary Root 
Message 

Message for the root node that contains 
binary data as a payload. 

0xC1 Heartbeat Message Packet contains nothing. This is meant to 
show that the node is alive. 

0xC2 Join Request Request to join the network. Allows the 
node to send and receive data from the 
network. Contains a randomly generated 
UID and possibly other data. 

0xD1 Debug Message Could contain anything. Software Defined. 

0xE1 Node Message Message to a node instead of to the root 
node. Follows the same structure as 0xB1 
(Generic Message). 

 
 

5.4. Computer Vision 
 
Machine learning will be used to implement computer vision for our system to detect fire 
in forests. Machine learning is a topical subject that has appeared in recent years. In our 
project, it is useful to classify images as “fire” or “not fire”. This classification and 
identification of different features of fire makes our design case a decent candidate for 
machine learning. By implementing and training a machine learning algorithm correctly, 
the system should be able to identify, with confidence, a fire rather quickly.  
 
Although there are many available resources and libraries for computer vision to detect 
fires, they are not accommodated to the processing power of Raspberry Pi. GPU is often 
used to implement these functions specially to train the model to a certain dataset as it 
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can be very large and may take large amount of processing. Our main task will be 
focusing on how to tackle the issues due to utilizing Raspberry Pi such as slower 
processing, memory limit, and limited power consumption. 
 

5.4.1. Color Classification plus Optical Flow  
 
Fire is a distinct object in a forest environment. It has contrasting color as well as distinct 
movements (flickering and spreading) compared to the rest. To utilize this information, 
we decided to implement color classification to isolate pixels with the colors of fire and 
detect motion using optical flow with the help of OpenCV.  
 

 
Figure  65: Overview design of color classification plus optical flow 

 
At least two images are needed for the optical flow to calculate the motion. Thus, two 
images will be taken using the camera attached to the Raspberry Pi Zero. Then the 
bilateral filter is applied to these images to blur the image while keeping the edges sharp. 
By doing so, the colors of fire will appear more sharply and clearly in some cases. Then 
the color classification is applied. The range of colors will be defined beforehand. In our 
project, we defined minimum RGB values to be (100, 17, 15) and maximum RGB values 
to be (255, 255, 180). The pixels will be isolated based on this range of RGB values. The 
rest will be masked. To find the contours of the fire, the image needs to be blurred using 
Gaussian Blur and resized slightly. Then, it is converted to grayscale to apply thresholds 
to the image. The contours are found by applying the findContours method from OpenCV 
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to the threshold image. These contours are then sorted based on the area size. The small 
area sizes are ignored to avoid false positives and excess detection.  
 
To utilize optical flow, the original images are used as frame 1 and 2. Then, they are 
converted into grayscale. The Gunner Farneback’s algorithm is used for two-frame motion 
estimation based on polynomial expansion. The hue value indicates the direction of the 
motion while the value plane corresponds to the magnitude of the motion. To find the 
contours in the optical flow image, methods used in color classification are similarly used 
(Gaussian blur, thresholding, findContours method, sort and restrict by area size). If there 
is at least one contour found in color classification, 35 is added to the confidence score. 
Similarly, if there is at least one contour found in optical flow, 35 is added to the confidence 
score. The last 30 comes from the overlap of the top contours between the two methods. 
The overlap indicates that there is an object with colors similar to the fire while having 
dense movements. The total confidence score obtainable from the color classification 
plus optical flow method is 100 (35 + 35 + 30).  
 

5.4.2. Machine Learning with Raspberry Pi Zero 
 
To have computer vision in Raspberry Pi Zero, we must pick the right packages and 
neural network architecture to obtain best possible processing time and accuracy. Upon 
experimenting and testing different methods, we found out that TensorFlow 1.8.0 and 
Keras 2.1.5 work best with Raspberry Pi Zero using Python 2.7. Since Raspberry Pi Zero 
is not optimal to train a model, we utilized Google Colab to train our model and upload 
the trained model to the Raspberry Pi to predict the fire in an image taken by its camera 
in addition to color classification plus optical flow method.  
 
Due to hardware restrictions and specific need to detect fire, training a model was much 
easier than making pre-trained models such as YOLO work in our system. Our neural 
network architecture is inspired by the Fire Detection Net [36].  
 
 

 
Figure  66:  Fire Detection Net Architecture 
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Through several experimentations and testing, we decided to use out current neural 
network architecture described in the diagram below. Minimizing the parameters resulted 
in 10 to 20 seconds faster processing time, but the accuracy significantly dropped. Thus, 
we decided to focus on simpler designs. At the end, we were able to achieve one percent 
higher accuracy with the model trained with the network architecture below.  

 
Figure  67: Current neural network architecture  

 
The result of our training is shown in the graph below. It uses binary cross entropy for the 
loss, ReLu for activation function, batch size of 32, learning rate of 1e-5, and 200 epochs. 
The highest validation accuracy was 93.36%. The accuracy corresponds to the 
confidence score (total of 100 for machine learning).  

 
Figure  68: Results of Training 

 

5.4.2.1 Dataset 
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Dataset is a crucial aspect in training the neural network. The accuracy depends heavily 
on the quantity and quality of the data. We did not find any free accessible forest fire 
specific dataset, so we decided to create our own dataset by acquiring online images 
relating to forest fires and forest (with no fire) to train and test our models with the help of 
Microsoft API [47]. The training went well for this specific dataset. However, we 
hypothesize that for best results, it is recommended to acquire these images by using the 
camera attached with the Raspberry Pi Zero so that the model is trained with appropriate 
environment and quality of images.  
 

5.4.3. Final Design of Computer Vision 
 
Now we must build the color classification, optical flow, and machine learning together to 
calculate the overall confidence score. There are total of 200 confidence score obtainable 
from the computer vision aspect. There are other confidence scores obtainable from the 
sensors. We take these values and take the average to obtain our final confidence score 
(maximum 100). If the confidence score is above 50, there is a fire detected. The 
threshold and weights of each sensors should be finetuned for best results. The overview 
of the combined software design is shown below.  

 
Figure  69: Overview design of computer vision 

 

6. Testing and Prototyping 
 

Testing the hardware and software was almost as important as the project itself. To 
ensure that everything was going to plan, each component and subsystem was tested 
separately first and then moved on to a more integrated testing system as time went on. 
This increased confidence that the final prototype was as functional as possible since all 
the bugs were worked out on a smaller scale before integration. The first section below 
deals with the advancement of our knowledge and experience with the subsystems that 
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prepared us for the final design. The sections after deal with testing a semi-final and final 
design. 
 

6.1. From Nothing to Something 
 
All projects must begin from somewhere. There are a few subsystems that must work 
together to complete the project: Power, Sensors, Network, Processing. This section 
deals with the process of prototyping in preparation for a final design. 
 

6.1.1. Power Subsystem 
 
Nothing in the system will function without the Power Subsystem. The power subsystem 
utilizes 3 different technologies to allow the full system to work. The first system that 
needed to be designed was the power regulation. We had identified through research that 
we will be using switching buck regulators for their efficiency. Energy lost to heat would 
not be ideal in a battery system. Tunable switching buck regulators were purchased to 
aid in simplifying the system and to account for any error in the power delivery. From this 
point some calculations were done to determine their efficiency and, using different loads, 
we will attempt to prove that the required power can be supplied by the regulator. 
 
After the regulator design was investigated, it was important to work on the battery design. 
We simply need to prove that we can charge and discharge batteries. Our batteries and 
battery charging circuit were put together on a breadboard and we attempted to charge 
and discharge the batteries. Safety was very important as the batteries are an energy 
storage device. This proof of concept was able to prove that we can charge batteries and 
use them efficiently. A few charge and discharge cycles were observed to prove that the 
battery will not deteriorate quickly over the course of only a few discharges. 
 
In the end, the system is meant to be powered from a solar panel. A solar panel was used 
to generate power from either the sun or a bright light. Use of the solar panel was 
investigated so we could become familiar with the characteristics of the device and how 
it affected our circuit. In the end, all three parts of this subsystem was combined with a 
simulated load such that we saw the power system could support everything. After testing 
this system, a layout was put together to put this system on a PCB and the design for the 
mechanical support structure for the solar panels was finished. 
 

6.1.2. Sensor Subsystem 
 
Testing the Sensor Subsystem took place in two parts: retrieving sensor data reliably and 
retrieving accurate data. To facilitate these tests, a Raspberry Pi was used so that the 
team could become familiar with the Raspberry Pi’s interface and operating system. The 
goal of the first portion of testing was to investigate the ease of use of the sensors. The 
sensor was hooked up on a breadboard, to power and all the supporting hardware was 
given to the device. Then the Raspberry Pi attempted to retrieve data from the device 
through I2C. At first the result’s values did not matter; just that results existed. All the 
sensors were tested to ensure their suitability for the project. It was at this point that a 
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sensor’s complexity and difficulty was assessed and if it was deemed suitable it would go 
into calibration stage. This step was important to determine what sensors would be used 
in the final prototype. 
 
Since the flame, smoke, and gas sensors were all modules and did not need test boards 
it was simple to test the sensors individually. The flame and smoke sensor both used an 
analog front end that converted analog signals to binary unitless values. Once the data 
bytes were converted to integers, an algorithm was developed to process the data and 
determine if a flame/smoke was detected after exposing the sensor to fire and none fire 
conditions. The gas sensor needed 48 hours of calibration before any data can be 
processed. Once it was properly calibrated, the data bytes were converted, and the 
compensation values were taken into account for calculation of the gas, temperature, and 
humidity measurement. The sensor was then exposed to fire and non-fire conditions to 
understand the gas measurements range are in the fire. The sensors went through 
several testing and calibration to tune the algorithm. 
 
The camera will be attached to the Raspberry Pi and can be operated through commands 
or Python file. It will be able to record a video or take images depending on what the user 
needs. Testing both functions will be beneficial to ensure proper operation of the camera. 
For computer vision, it is important that the camera will be able to save multiple images 
to designated folder.  
  

6.1.3. Network Subsystem 
 
Testing the Network Subsystem consisted of a few parts to ensure that the Network 
software and hardware works all together. The first step was programing some 
development kits that use the SAMR34 as the processor. The development kit is the 
SAMR34 Xplained Pro Evaluation Kit. The SAMR34 has a built in Semtech SX1276 LoRa 
transceiver which gives the team a chance to get a feel for the software and hardware 
requirements since the plan is to use the SAMR35 microcontroller. Using two of these 
evaluation kits, software is written to send text to a screen when a button is pushed. This 
is important as serial communication is planned to be the method of communication 
between the Network Subsystem and the Processing subsystem. During testing, the 
SX1276 transceiver inside the SAMR34 was not functioning. This could be due to many 
things. To get it working, weeks were spent tweaking register values and attempting to 
get the system working. In the end, emails were sent to Semtech and Microchip to attempt 
to get it working. To get software working for the final prototype, two RYLR896 modules 
were bought to just get LoRa working in general with the SAMR34/35.  
 
 From there a program was written to allow a button push to turn on the built-in user LED 
on the other device. The LoRa protocol was used to complete this. This proof of concept 
step is important as it lays the foundation to sending data over the LoRa based network. 
The final piece of testing that went into the development of the system is to have user 
input. The user will type a string into a terminal that serially sends the data to the network 
controller. The network controller sent this string to the other device and the other device 
printed the data to another terminal. After this test, the software was ready to be 
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developed for the mesh network protocol since data can be transferred between the two 
evaluation kits. The evaluation kits will be used to develop the software until the time 
functioning PCBs for the final system are available for testing. 
 
In the end, the RYLR896 modules worked with the SAMR34 Xplained PRO but when the 
final PCB was delivered, soldering issues were suspected with the SAMR35 and so these 
modules would not work with the PCB. To mitigate these issues RFM95W modules were 
purchased since they use the SX127x transceivers. Since they use SPI with the native 
module, the SPI bus was connected to the Raspberry Pi. This meant that the network 
software was now to be written for the Raspberry Pi to interface with the module.  
 
The next part of testing for the Network Subsystem is the internal timers and GPIO pins. 
On a breadboard, the Network Subsystem connects to LEDs. This is to simulate the fire 
condition on the final system. The final round of testing included implementing the 
different packets and interpreting the LoRa binary data. This was successful and resulted 
in the implementation of the final design as described in this paper. 
 

6.1.4. Processing Subsystem 
 
Testing the Processing Subsystem is important as this is the subsystem that determines 
if a fire is in the area. There are three parts to developing the Processing Subsystem. To 
test the Processing Subsystem, first, a Raspberry Pi was set up with all the software 
necessary to perform computer vision algorithms and run Python code. Ensure that the 
camera is working using the Raspberry Pi and able to save the captured images to a 
folder accessible for machine learning algorithms. Each sensor outputs raw data that is 
then analyzed to create a data processing algorithm in python to determine probabilities 
of gas, smoke, and flame.  
 
Since Raspberry Pi Zero cannot handle training the model using its processing power, 
we download a trained model into it and run the prediction using that model. To have the 
model trained, we used Google Colab, a free cloud service, in order to utilize its free GPU 
to train efficiently. It was ensured to install TensorFlow 1.8.0 and Keras 2.1.5 on the 
Google Colab notebook as well. Once a model is trained, it was run using the Raspberry 
Pi to test it. After testing different versions of Tensorflow, TensorFlow Lite, and Keras, it 
was determined that the best version to work with Raspberry Pi Zero is TensorFlow 1.8.0 
and Keras 2.1.5. Once the model is ready to be tested, it was run along the other methods 
of computer vision which are color classification and optical flow to find the total 
confidence score of detecting fire.  
 
However, the subsystem can significantly improve its accuracy by having more data for it 
to be trained. The best data would derive from the camera that the subsystem is utilizing 
along with consistent environment for it to capture images. By doing so, the neural 
network will be able to learn appropriately for its usage and result in higher accuracy 
compared to random online images that we currently use as the dataset. This is proven 
to work as our current model achieves 93% accuracy testing with our current dataset.  
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The second part of prototyping and testing the Processing Subsystem will be the 
interaction between the Processing Subsystem and the sensors. To go about testing this, 
the sensors were introduced into the system one at a time and it was ensured that the 
connections between the raspberry pi and the sensors works appropriately. For the gas 
sensor, a logic analyzer was used to see the signals sent to and from the Raspberry Pi 
and the sensor. This testing was meant to focus on the software interaction between the 
Raspberry Pi and the sensors since issues were noticed during integration. 
 
Finally, the Sensor software was tested with the Network Subsystem. The Raspberry Pi 
attempts to write information to a file. This kind of testing will not focus on the software 
interacting correctly as in the final system, although it could simulate it. The goal of this 
testing is to verify that messages can be sent reliably between the two devices. The 
network software, now written for the Raspberry Pi and not the SAMR35 reads the file 
and takes some action based on the values in that file. These values are used later to 
determine if a fire is present and allows the network software to send a “fire found” packet 
through the network. 
 

6.2. Step-by-Step Hardware Test Plan 
 
Without the hardware, the software cannot do its job. It is imperative that the hardware 
operates on a reliable base for the software to be built upon so that the prototype functions 
in all conditions: day, night, harsh weather, or perfect, clear skies. The following sections 
discuss some of the step-by-step plans for testing the hardware components and why it 
was useful to do so. 
 

6.2.1. Power 
 
Stable power is the backbone to the entire circuit. Power is the only sure thing that a 
circuit must have working to perform its function. To test the power systems a step-by-
step plan is introduced. 

 
 
 
 
Step-by-step: 

a. Set up all power supplies to the expected nominal voltage from our solar panels 
and allow for as much current draw that is necessary 

b. Test all power converters and regulators separately and measure their outputs. 
Test them under the expected load of the system and make sure they perform. 

c. Modify the load and map their efficiency to ensure proper operation. 
d. Starve the converters and regulators of current and observe their effects on the 

simulated load. Make note of the minimum current the converters and regulators 
can maintain 

e. Repeat the above steps for lower than nominal voltages and higher than nominal 
voltages. Do not exceed the recommended highest voltage of each converter or 
regulator.  
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f. Test different circuit protection techniques to help for overvoltage and overcurrent 
conditions. 

g. Set up the charging circuit for the batteries and give it nominal conditions for 
charging and observe the effects.  

h. Connect all the systems together, including power supply and load to get a fully 
working power system. 

i. Shift the power supply to a solar panel and test it with a bright light source and/or 
sunlight. 
 

6.2.2. Hardware Sensor Testing 
 
Sensors will require hardware testing and software development discussed later in the 
paper. Hardware testing of the sensor included testing the physical capabilities of the 
sensor. The sensors use I2C, therefore it is important to ensure the sensors are visible in 
the I2C-detect when connected to the raspberry pi. Therefore, a testing procedure must 
be put in place. 
Step-by-step: 

a. Power sensors and connect SCL and SDL lines 
b. Establish connection between raspberry pi and sensors through I2C 

communication to see if results can be read.  
a. Create a circuit for the sensors and see if they respond to any external stimuli: 

a. Gas sensor will be exposed to nearby smoke and fire to test detection of 
organic gases, and measure temperature and humidity levels. 

b. Flame sensors will be exposed to nearby flames to detect flame flicker 
c. The camera will be exposed to nearby flames to record fire and non-fire 

data as explained in section 6.3.3 Computer Vision  
d. Smoke sensor will be exposed to nearby smoke to assess smoke is 

detected. 
c. Hardware testing went through multiple trial and error runs with varying levels of 

gas, smoke, and flame exposure to not only obtain raw data but also to test the 
minimum and maximum capabilities of the sensor. Understanding the minimum 
and maximum capabilities will help determine the distance range between each 
device in the forest. 

d. Then the software code was written to read the result and try to get meaningful 
data after converting data bytes to integers. The output was checked to see if fell 
within an expected and acceptable range. 

e. The sensor reading was converted to meaningful “real world” values and ensure 
they are acceptable for real world scenarios (especially the current scenario the 
sensor is in).  

a. Gas, temperature, and humidity measurements in ohms, Celsius, 
and % 

b. Flame and smoke sensors to count the number of consecutive 
True changes detected. 

f. Provide the data to machine learning engineer to use for algorithm development. 
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6.2.3. Controllers 
 
Testing the controllers is important since these pieces of hardware control everything. 
Each system has its own set of requirements, however. 
 

6.2.3.1. Raspberry Pi 
 

The Raspberry Pi is a computer with a very small footprint. Since it runs a distribution of 
Linux, we should ensure that the Raspberry Pi can boot properly and can run software. 

 
The test procedure is step-by-step as follows: 

a. Boot into the Raspberry Pi operating system and interact with the terminal 
b. Write some software to toggle GPIO pins, maybe to turn on and off an LED 
c. Record power usage under idle and stressed conditions 
d. Output SPI, I2C, and/or UART with the Raspberry Pi. 
e. Using one of the voltage regulators in the Power subsystem, power the raspberry 

pi from that instead of the normal USB power (using pins 2 or 4 on the header 
pins). Repeat the following steps to ensure everything is working. 

 

6.2.3.2. SAMR35 
 
The SAMR35 is a full-on embedded microcontroller. As such, it does not use an operating 
system (unless one is uploaded onto it). For hardware testing, a simple plan can be put 
in place to test the different possibly required peripherals and ensure the chip is working 
correctly. 

 
Step-by-step: 

a. Program the chip to toggle a GPIO pin, possibly turning on and off an LED. Use 
delays based on timer interrupts if possible 

b. Program the chip to output SPI, I2C, and/or UART 
c. Record power usage under idle and stressed conditions 
d. Using one of the voltage regulators in the Power subsystem, power the chip from 

that instead of a power supply 
e. If using a Real Time Operating System, schedule two jobs to run concurrently 

and see how they interact. Using an oscilloscope see the delay between the two 
jobs if running concurrently. 

f. Test RF capabilities if applicable/possible. Note: This step was attempted over 
weeks of development and did not result in success. 

 

6.2.4. Radio Frequencies 
 
Testing RF designs can be challenging. Testing this assumes that the SAMR35 has been 
tested and that some software has been written to interact with the LoRa peripherals. The 
following steps would have been done if the SAMR35 was successfully programmed to 
output LoRa.  
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Step-by-step: 
a. Program the chip to send out data whether it be FSK or LoRa.  
b. Watch a spectrum analyzer to see if that data is being transmitted in the air and 

if it is being transmitted properly 
c. Take two devices and attempt simple communication, possibly light an LED on 

received data. Attempt to transmit larger packets as well like strings. Investigate 
streaming data. 

d. Range test: With a working simple communication test, do some tests in different 
environments with range. Some ideas include: Line-of-Sight, in or around 
buildings/urban environments, wooded/forest environments. See how the range 
is affected. Measure results every 100-200m and expand until range is 
compromised.  

 
In the end, the SAMR35 was not used to produce LoRa signals. For the final prototype 
separate SX127x modules were used. To test these modules, the following steps were 
used. 
 
Step-by-step: 

a. Program the Raspberry Pi to send SPI to the SX127x and get version information 
b. Send a test transmission through LoRa to another Raspberry Pi 
c. Print that data to a file 
d. Implement basic packet structures 
e. Send data that specifically turns on an LED 

 
 
 
 

6.3. Step-by-Step Software Test Plan 
 
Software is an important and critical piece of the prototype and must be done correctly to 
determine if there is a fire. Thus, proper testing of the software is important. The following 
sections outline step-by-step plans to testing the software components and why it might 
be useful to do so. 
 

6.3.1. Connection Between the Hardware and Software 
 

The hardware and software must work together to have a working prototype. To make 
sure this is the case, simple software was written to calibrate, initialize, test, and train the 
sensors and cameras to detect various characteristics of fire. This allowed the team to 
see if the implementation and ideas are feasible or if the implementation needs to be 
adjusted. The results from testing are then tuned to ensure that the sensors and camera 
were able to detect fire. 
 

6.3.2. Software Development for Sensors from Hardware Testing 
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The sensors play an important role in the process of determining if there is a fire. 
Computer vision method is one option and will be discussed further in the paper; however, 
the other sensors can provide us with more confidence that there is, indeed, a fire. The 
sensors were used to monitor the environment and support computer vision in fire 
detection. The data from sensors can also provide indication on the type of fire. Sensor 
operation is depicted in the diagram of figure 74. Each sensor has its own data processing 
algorithm, which is discussed below: 
 
Gas:  
The data collection for the gas sensor is very straightforward. Since this sensor was 
calibrated for a long time, the measurements are stable and relatively accurate. The raw 
measurements for temperature, humidity, and gas are obtained and then compensated 
to improve accuracy. The final values are calculated in Celsius, percent, and ohms to 
interpret the data. Temperature and humidity readings from the can be used to monitor 
the environment and a warning can be sent when high temperatures exist in a dry 
environment. In fire conditions, the gas measurement rises significantly higher compared 
to non-fire conditions. When a gas measurement reaches a maximum value, a warning 
is sent to indicate high levels of volatile organic compounds present in the atmosphere.  
 
Smoke:  
The PIM438 module which includes the MAX30105 module receives a raw data from the 
IR and Visible light detector. The algorithm is designed to take the mean of incoming data 
and look for changes between the means by taking the difference between the recent 
mean and the mean taken X readings ago (delta). A change is detected when the delta 
value is greater than the threshold value. The mean size, delta size, and threshold can 
be tuned to increase data smoothing and sensitivity. A function was created to count the 
maximum number of consecutive True changes. If this value is greater than a set value, 
then flame has been detected.  
 
Flame: 
The sensing element in the ePY12241 provides an output current that is proportional to 
the rate of change of temperature of the material. The chip uses an analog front end to 
receive an analog signal, which is then filtered by a high pass filter. The signal then goes 
into a sigma delta ADC convertor. Then, the low pass filter removes large frequencies, 
and the data is then read by the MCU.  
 
A data window is specified, and the RMS of the raw signal is taken to determine the signal 
strength of the combination of the frequencies in the bandpass of the filters used. The 
reading is then divided by the signal multiplier, which is the sample rate. From here the 
flame algorithm is similar to the smoke algorithm where the delta is calculated from the 
current value and the value X readings ago. A change is detected when the delta value 
is greater than the threshold value. The RMS data window, mean size, delta size, and 
threshold can be tuned to increase data smoothing and sensitivity. A function was created 
to count the maximum number of consecutive True changes. If this value is greater than 
a set value, then flame has been detected.  
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𝑅𝑀𝑆 =  
√(𝑑1)2 +  (𝑑2)2 + ⋯ (𝑑𝑛)2

𝑛
 

 
dn is the raw data collected from the pyroelectric infrared detector.  
n is the number of data collected in a data window (data window size). 
 
Integration: 
After exposing the three sensors to a fire burning in a grill, each sensor was able to 
successfully detect a fire. The gas sensor showed that when its exposed to a fire, the 

temperature increased greater than 60C and the relative humidity was greater than 60%. 
However, this does not entirely indicate there is a fire, rather it can be used to determine 
potential forest fire condition. In other climates, the humidity can be lower. The gas 
measurement in ohms was significantly higher than in non-fire conditions. 
 
The smoke sensor was able to detect more than 20 consecutive True changes which 
satisfied the requirement for smoke detection.  
 
With a nearby fire, the most significant bit of the sensor is set which resulted in a flame 
detected. During a test using a lighter placed approximately 1m away in low light, the 
flame algorithm was able to detect flame with 10 consecutive true statements. This is 
expected since the lighter produces a smaller flame. The thresholds, channel and analog 
settings can be adjusted to increase or decrease the algorithm’s sensitivity.  
 
 

6.3.3. Computer Vision 
 
The color classification and optical flow can be tested using the Raspberry Pi Zero. It is 
important for the camera was compatible Raspberry Pi Zero.  
 
Step-by-step: 

a. Install OpenCV and other basic packages to Raspberry Pi Zero 
b. Enable camera and reboot 
c. Test the camera to ensure it operates properly and saves the image through 

commands 
d. Create a Python file to run the camera and save images to a folder 
e. Create a Python file to run the code for color classification and optical flow by 

reading images saved in the folder 
f. Finetune the parameters in filters, saturation, and so on  
g. Check if the confidence score is properly saved in the designated txt file for later 

use 
 
Here are several sample images from to ensure the code is working properly.  
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Figure  70: Sample results using color classification and optical flow 

The figure above shows the original image on the left, the color classified image on the 
middle, and the image from optical flow on the right. The range of colors to be detected 
can be adjusted for better results.  
 

 
Figure  71: Sample results of contouring 

Detection of contours can also be adjusted by the area size, filters, and thresholding. 
Finetuning will most likely be necessary for specific environment.  
 
For testing the machine learning, Google Colab and Raspberry Pi Zero are needed. The 
Raspberry Pi Zero cannot train a model due to its limited processing power. Thus, Google 
Colab becomes handy in training model and testing the model before running it in the 
Raspberry Pi. For both Google Colab and Raspberry Pi Zero, ensure that TensorFlow 
1.8.0 and Keras 2.1.5 are installed for Python 2.7.  
 
Step-by-step: Google Colab (can be ran with Python 3) 

a. Ensure the correct version of TensorFlow and Keras are installed 
b. Ensure access to the dataset  
c. Train a model  
d. Observe the training loss and accuracy  
e. Adjust hyperparameters as needed  
f. Test the trained model  

 
Once the model is trained, it is ready to be used in Raspberry Pi Zero.  
 
Step-by-step: Raspberry Pi Zero 
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a. Ensure the correct version of TensorFlow and Keras are installed 
b. Ensure to have the correct trained model   
c. Test the model  
d. Observe the accuracy, it will correspond to the confidence score 
e. Adjust hyperparameters as needed  
f. Combine the code from color classification and optical flow 

 
There should be two confidence scores resulting from the color classification plus optical 
flow and machine learning which are saved in shared file for later integration with the 
sensors.  
 

6.3.4. Networking 
 
The network hardware was tested in a step-by-step procedure. First, sending simple 
strings between the devices. Once strings were sent, the software could be developed. 
These tests describe the testing done after the switch to using the Raspberry Pi with LoRa 
modules instead of the SAMR35. 
 
Step-by-step: 

a. Turn on LoRa modules with Raspberry Pi and configure them to send/receive 
LoRa frames. 

b. Set up receiver to wait for RX interrupt and print string that fired that interrupt to 
the terminal 

c. Write to the transmit FIFO with SPI on the transmitter. 
d. Read back the FIFO to confirm that it is saved 
e. Set the transceiver to “TX” mode 
f. Watch the terminal 

 
From this point on, the device is ready to run the Network Software. 

 
 

6.4. Prototype Construction 
 
The sensor subsystem, power system, and RF subsystem were individually designed on 
KiCad and then integrated into a single schematic using hierarchical pages. The PCB 
layout was then routed. Using any PCB manufacturer, the specifications of the PCB used 
to purchase it are a 2-layer FR-4 PCB with 0.8mm thickness and 6/6mil minimum 
track/spacing. The minimum Hole size was .3mm and lead free HASL was chosen for the 
surface finish. 1oz copper was used as it was cheaper. To solder the surface mount 
components on the top layer, a stencil was also purchased. 
 

6.4.1. Equipment 
 
The follow equipment was used to complete testing and building the prototype: 
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A soldering iron kit with lead free solder, hand-held multimeter, tweezers, plyers, logic 
analyzer, breadboard, general components (such as resistors, capacitors, inductors), 
jumper wires, and wire strippers. 
 

6.4.2. Bill of Materials 
 
The following table is a detailed bill of materials of the parts and components used in 
the project.  
 
Table 12: BOM 

Part Name General 
Descripti
on 

System Part 
Number 

Qty Unit 
Cost 

Total 
Cost 

Suppli
er 

Solar Panel Solar 
panel 

Power Generic  2 $4.99  $9.98  Ebay 

AC-DC 5V 
3A 

power 
supply 

Power AL5V3ABK 1 $8.99  $8.99  Amazo
n 

MSOP to 
Dip SMT 
Adapters 

adapter Power IPC0078-
ND 

1 $6.29  $6.29  Digikey 

Analog 
Devices 
LT3652EM
SE#PBF 

Li-Ion 
charging 
IC 

Power LT3652EM
SE#PBF-
ND 

2 $7.61  $15.22  Digikey 

BK-18650-
PC4 

Double 
18650 
Cell 
holder 

Power BK-18650-
PC4-ND 

1 $5.73  $5.73  Digikey 

EEU-
FC1V391S 

Capacitor Power P10300-
ND 

1 $0.28  $0.28  Digikey 

EMK212BJ
106KG-T 

Capacitor Power 587-1295-
1-ND 

2 $0.20  $0.40  Digikey 

ECA-
1EHG101 

Capacitor Power P5540-ND 1 $0.29  $0.29  Digikey 

08053C105
KAT2A 

Capacitor Power 478-5030-
1-ND 

1 $0.26  $0.26  Digikey 

MBRS130L
T3G 

Schottky 
diode 

Power MBRS130
LT3GOSC
T-ND 

3 $0.47  $1.41  Digikey 

LQM18FN1
00M00D 

Inductor Power 490-4025-
1-ND 

1 $0.15  $0.15  Digikey 

ERJ-
3EKF7873V 

Resistor Power P787KHCT
-ND 

1 $0.10  $0.10  Digikey 
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MCU0805-
100K-
CFCT-ND 

Resistor Power MCU0805-
100K-
CFCT-ND  

2 $0.39  $0.78  Digikey 

A102249CT
-ND  

Resistor Power A102249C
T-ND  

1 $0.19  $0.19  Digikey 

619kOhm Resistor Power RMCF080
5FT619K 

1 $0.10  $0.10  Digikey 

412kOhm 
resistor 

Resistor Power 541-
412KHCT-
ND 

0 $0.10  $0.00  Digikey 

412kOhm 
resistor 

Resistor Power RC0603FR
-07412KL 

1 $0.10  $0.10  Digikey 

CRA2512-
FZ-
R050ELF 

Resistor Power CRA2512-
FZ-
R050ELF 

2 $0.60  $1.20  Digikey 

CRA2512-
FZ-
R100ELFC
T-ND 

Resistor Power CRA2512-
FZ-
R100ELFC
T-ND  

2 $0.56  $1.12  Digikey 

910-
PA0006 

16 SOIC 
to DIP 
adapter 

Sensor PA0006 1 $4.09  $4.09  Mouser 

Pyreos 
EPY12241  

Flame 
sensor 

Sensor EPY12241
-B1 

1 $41.5
4  

$41.54  Mouser 

Microchip 
Technolog
y 579-
RE46C190
S16F 

Smoke 
Sensor 

Sensor RE46C190
S16F 

1 $1.30  $1.30  Mouser 

Sensiron 
SVM30-J 

Gas 
sensor 

Sensor 403-
SVM30-J 

1 $20.8
0  

$20.80  Mouser 

100uF Capacitor general GRM31CR
61A107ME
05L 

1 $0.78  $0.78  Mouser 

10uF Capacitor general C0805C10
6M9PAC 

2 $0.15  $0.30  Mouser 

1uF Capacitor general 885012207
078 

3 $0.10  $0.30  Mouser 

4.7uF Capacitor general 0805X475
M250CT 

1 $0.10  $0.10  Mouser 

33uF Capacitor general C2012X5R
0J336M12
5AC 

1 $0.87  $0.87  Mouser 

.1uF Capacitor general 0805ZD10
4KAT2A 

14 $0.10  $1.40  Mouser 

https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CPF0603F280KC1/A102249CT-ND/2728225
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CPF0603F280KC1/A102249CT-ND/2728225
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CPF0603F280KC1/A102249CT-ND/2728225
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CPF0603F280KC1/A102249CT-ND/2728225
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
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33pF Capacitor general VJ0805A3
30GXXCW
1BC 

1 $0.29  $0.29  Mouser 

4.7pF Capacitor general VJ0805A4
R7BXXCW
1BC 

1 $0.10  $0.10  Mouser 

17pF Capacitor general 0603N170
J500CT 

0 $0.10  $0.00  Mouser 

17pF Capacitor general GRM0335
C1H180G
A01D 

2 $0.10  $0.20  Mouser 

4.7nF Capacitor general 885012208
007 

1 $0.14  $0.14  Mouser 

3.9pF Capacitor general 0805N3R9
B500CT 

2 $0.13  $0.26  Mouser 

22pF Capacitor general VJ0805A2
20GXXCW
1BC 

1 $0.29  $0.29  Mouser 

18pF Capacitor general 0805N180
J500CT 

1 $0.10  $0.10  Mouser 

3.3pF Capacitor general RF18N3R3
B250CT 

3 $0.28  $0.84  Mouser 

8.2pF Capacitor general 08053A8R
2CAT2A 

1 $0.23  $0.23  Mouser 

5.6pF Capacitor general 06033A5R
6BAT2A 

2 $0.76  $1.52  Mouser 

1nF Capacitor general 885012207
033 

1 $0.10  $0.10  Mouser 

47pF Capacitor general VJ0805A4
70GXXCW
1BC 

1 $0.29  $0.29  Mouser 

2.7pF Capacitor general VJ0805A2
R7BXXPW
1BC 

1 $0.25  $0.25  Mouser 

Diode Schottky Power STPS2L40
AFN 

2 $0.36  $0.72  Mouser 

Transistor Transistor 
for Relay 

Power 2N7002NX
AKR 

3 $0.10  $0.30  Mouser 

Yellow LED Sensor LTL2R3KY
D-EM 

3 $0.10  $0.30  Mouser 

Green LED Sensor LTL2R3KG
D-EM 

2 $0.10  $0.20  Mouser 

IR Emitter 
+ 
Photodiod
e 

IR Emitter 
+ 
Photodiod
e 

General SEN-
00241 

2 $1.95  $3.90  Mouser 
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SAMR35 Network 
Controller 

Commu
nication 

ATSAMR3
5J18BT-
I/7JX 

0 $5.64  $0.00  Mouser 

SAMR35 network 
Controller 

Commu
nication 

ATSAMR3
5J18B-
I/7JX 

3 $5.64  $16.92  Mouser 

RF Switch  RF Switch 
for Band 
select 

Commu
nication 

SKY13373
-460LF 

2 $1.20  $2.40  Mouser 

Connector Connector 
for Flame 
Sensor 

Sensor 613010218
21 

2 $0.74  $1.48  Mouser 

Connector Prog. 
Conn. for 
Smoke 
Sensor 

Sensor A3B-12PA-
2DSA(51) 

2 $0.57  $1.14  Mouser 

Connector Connector 
for Pi Zero 

Commu
nication 

613040218
21 

2 $1.79  $3.58  Mouser 

Connector Programm
ing Conn. 
For 
SAMR35 

Commu
nication 

FTSH-105-
01-F-DV 

2 $1.47  $2.94  Mouser 

Connector Wire 
connector 
for gas 
sensor 

Sensor DF51K-
4DS-
2C(800) 

2 $0.23  $0.46  Mouser 

Connector Connector 
for Gas 
Sensor 

Sensor 455-1751-
1-ND 

2 $0.79  $1.58  Digikey 

SMA 
Connector 

Connector 
to an 
Antenna 

Commu
nication 

142-0701-
201 

2 $2.79  $5.58  Mouser 

10uH Inductor General RLB0912-
100KL 

1 $0.31  $0.31  Mouser 

Ferrite 
bead 

Inductor General MMZ2012
D121BT00
0 

3 $0.11  $0.33  Mouser 

2.2nH Inductor General L06032R2
CGSTR 

1 $0.61  $0.61  Mouser 

33nH Inductor General AIMC-
0805-
33NJ-T 

2 $0.14  $0.28  Mouser 

11nH Inductor General LQP03HQ
11NH02D 

5 $0.21  $1.05  Mouser 
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10nH Inductor General AIMC-
0805-
10NJ-T 

0 $0.16  $0.00  Mouser 

10nH Inductor general  
CE201210-
10NJ 

5 $0.11  $0.55  Mouser 

100R Resistor General CRCW120
6100RFKE
AC 

1 $0.10  $0.10  Mouser 

0R Resistor General CRCW120
60000Z0E
AC 

10 $0.10  $1.00  Mouser 

330R Resistor General CRCW120
6330RFKE
AC 

2 $0.10  $0.20  Mouser 

1k Resistor General RR1220P-
102-D 

10 $0.10  $1.00  Mouser 

100k Resistor General RR1220P-
104-D 

3 $0.10  $0.30  Mouser 

39R Resistor General RN73R1JT
TD39R0D2
5 

0 $0.35  $0.00  Mouser 

39R Resistor General RT1206FR
E0739RL 

2 $0.19  $0.38  Mouser 

32.768kHz Oscillator General COM-
00540 

2 $1.50  $3.00  Mouser 

32MHz Oscillator General 1664-
1300-1-ND 

2 $2.91  $5.82  Digikey 

Button for 
the Join 
and Reset 

Button Sensor COM-
11997 

3 $0.98  $2.94  Mouser 

MR5FT50L
0 

Resistor Power 
Testing 

MR5FT50L
0CT-ND 

1 $1.54  $1.54  Digikey 

EEU-
FC1V391S 

Capacitor Power 
Testing 

P10300-
ND 

1 $0.28  $0.28  Digikey 

RSMF1JTR
100 

Resistor Power 
Testing 

RSMF1JT
R100CT-
ND 

1 $0.37  $0.37  Digikey 

MFR-
25FBF52-
787K 

Resistor Power 
Testing 

787KXBK-
ND 

1 $0.10  $0.10  Digikey 

RSF2JT100
K 

Resistor Power 
Testing 

RSF2JT10
0KCT-ND 

2 $0.29  $0.58  Digikey 

MFR-
25FBF52-
280K 

Resistor Power 
Testing 

280KXBK-
ND 

1 $0.10  $0.10  Digikey 
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MFR-
25FBF52-
412K 

Resistor Power 
Testing 

412KXBK-
ND 

1 $0.10  $0.10  Digikey 

MFR-
25FBF52-
619K 

Resistor Power 
Testing 

619KXBK-
ND 

1 $0.10  $0.10  Digikey 

ECQ-
E2105KF 

Capacitor Power 
Testing 

EF2105-
ND 

1 $0.58  $0.58  Digikey 

1N5822-TP Schottky 
diode 

Power 
Testing 

1N5822-
TPMSCT-
ND 

3 $0.45  $1.35  Digikey 

Lora 
Module 
SX1276 

Communi
cation 
Module 

Commu
nication 

REYAX 
RYLR896 

2 $19.5
0  

$39.00  Amazo
n 

JST PH 
Cable 
Connector  

Cable 
connector 
for gas 
sensor 

Sensor 26AWG 1 $7.99  $7.99  Amazo
n 

Air quality 
sensor 

new gas 
sensor 

Sensor SEK-
SVM30 

1 $21.2
8  

$21.28  Digikey 

Pimoroni 
smoke 
sensor 

Smoke 
sensor BO 

sensor PIM438 2 $16.3
0  

$32.60  Mouser 

Samsung 
18650's 

4, 18640 
Cells 

Power B08C3XG
WG8 

1 $28.6
8  

$28.68  Amazo
n 

m2 Stand 
offs 
(optional 

Litorange 
320PCS 
M2 Male 
Female 
Nylon Hex 

Sensor 31161816 1 $13.9
9  

$13.99  Amazo
n 

Raspberry 
pi camera 

LoveRPi 
5MP 
Camera 
Module 

camera B07KF7G
WJL 

1 $9.99  $9.99  Amazo
n 

Adafruit 
BME680 

New gas 
sensor 

sensor BME680 1 $22  $22.00  Mouser 

LM2596 DC-DC 
converter 

power LM2596 1 $11.9
9  

$11.99  Amazo
n 

128 
microsd 
card 

SD card Commu
nication 

MB-
ME128HA 

1 $19.0
0  

$19.00  Amazo
n 

DFRobot 
Accessorie
s 
Gravity4Pi
n IIC/I2C 

Gas 
sensor 
connector 

Sensor FIT0513 1 $6.00  $6.00  Mouser 
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UART 
SNSR 
Cables 

 

6.5. Testing Environment 
 

There were three conditions to test the prototype in. The first one is direct line of sight 
testing which means it must have large empty spaces half a mile to a mile long for the 
best-case scenario. The following environments are potential testing environments.  
 
 
 
 
 
Remote at home testing: 
Prior to selecting the final components used for the final prototype, the main components 
for each subsystem was purchased to test before determining its suitability. This included 
each peer purchasing a raspberry pi, SD card, DC power source as well as the 
components each peer was responsible for in the project. This process also included 
downloading any relevant software applications and becoming familiar with the chosen 
programming language, python.  
 
During at home testing, the peer attempted to test their components in a controlled 
environment. The sensors were tested using a lighter to test for flame and gas. Smoke 
signals will be tested by burning wood and placing the sensors near the fire. This will also 
be necessary for calibrating certain sensors. The camera will be tested in front of fire and 
non-fire conditions to save images that will be used for computer vision. This dataset will 
be used to train a model that can attempt to identify a fire. The LoRa module was tested 
by attempting to establish communication with at least two devices to see if data can be 
sent and received. The solar panel system was tested at home to observe and understand 
its ideal positioning for maximum sunlight absorption.  
 
On campus testing - UCF Arboretum: 
The University of Central Florida has an arboretum that acts as a creative learning 
environment. The arboretum includes a 5-acre Cypress dome, an oak hammock of 3-
acres, and 15 acres of sand pine and Florida scrub connected to the original Arboretum 
by the saw palmetto community and the longleaf pine flatwoods. Currently the entire area 
of the arboretum includes 82 acres [48]. The UCF arboretum has the landscape and 
environment for potential forest fires. Thus, it would be ideal to create a controlled fire in 
this space and determine if the sensors are able to detect fires. Moreover, testing in this 
environment will allow for experimentation with various mechanical designs and 
understand which design is best suited for this project. In addition, this will allow the 
engineers to understand where is the best placement of the devices on the tress: how 
close to the earth can the sensors be placed in order for it to be close enough to detect 
the gas, fire, and smoke without interrupting the natural environment and wildlife. Lastly, 
the engineers wanted to test the range of the devices using the LoRa module at 10m, 
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50m, 100m, and 150m apart to observe if the communication and data transmission is 
still maintained. Moreover, the engineers wanted to investigate how close the sensors 
should be for effective fire detection. 
 
Testing in this area will require permission from the UCF college of engineering 
department and the UCF facilities and safety department. In the event the project is ahead 
of schedule, the engineers were open to the possibility of testing the F.I.R.E device in a 
controlled fire that is routinely done by UCF Facilities and Safety team as a prevention 
mechanism for forest fires. The UCF arboretum would have been the ideal testing 
environment since it is used by students from other colleges for educational purposes.  
 
Due to COVID-19 and social distancing requirements, the UCF campus was closed and 
the engineering working in this project could not access the arboretum to test the 
prototype. Moreover, the project faced delays to due to lack of equipment and resources, 
since the UCF Senior Design labs were closed and not accessible. As a result, this project 
was tested outdoors near a barbeque grill where a controlled fire was made to test the 
prototype.   
 

 
Figure  72: Controlled fire at the UCF Arboretum [48] 

 

7. System Integration 
7.1. System Design 

 
An overall glance at the system shows the solar array hooked up to an ‘all in one’ LT3652 
IC which will output 16.6 volts and a max of 2 amps with the input from the array. That 
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was then feed into a set of Li-ion batteries. That battery was then, with help from excess 
power from the solar panel, inputted into two buck converters to make 5 volt and 3.3-volt 
rails. These two rails handled power to the entire system as some components require 
specific voltages. The 5-volt rail ran the LoRa module and the Raspberry Pi and this rail 
pulled the most power out of the system due to how much power a Raspberry Pi requires. 
The 3.3-volt rail handled powering all the sensors and pulled less power.  

 

 
Figure  73: High Level System View 

 

7.1.1. Sub-System Connections 
 

Each system must have all the connections necessary to communicate properly between 
each other but inside each system there are smaller components that need their own 
source of power or need to be connected to the same node as another system for 
grounding or the correct resistive purposes. To make sure everything is wired correctly 
the sub-systems were designed using KiCAD’s hierarchical sheet system. Each 
component was individually designed and linked together using this hierarchy structure, 
so the overall design did not get to cluttered or large to view and edit. Doing the designs 
like this also helped with making sure everything was wired correctly in the final assembly 
of the system. 
 

7.2. System Operation 
 

The system operates in a cyclic fashion turning on to cycle through all the sensors to 
check if there is a fire under certain conditions. This is depicted in the diagram below. It 
then processes that information using the computer vison on the Raspberry Pi and state-
space to store and check if the other sensors are within their constraints. If everything is 
determined to be fine, then the machine will go back into a sleep mode and wait for its 
timer to turn itself back on and run through the same process. If the system runs through 
all its checks and determines that there is a fire the LoRa module will then be booted up 
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Raspberry Pi 

I2C bus 

and that data will be transmitted in a mesh network until it gets to an operator who is 
monitoring the overall system. That operator can then check what determined that fire 
and decide with human intervention if it is a false alarm or if they need to respond by the 
measures deemed necessary.  
 
 

  
 

Figure  74: Sensors data sent to processor  

 

7.2.1. Power system 
 
For the initial setup of the power system all that must be done is connecting the solar 
panel array to the board. Next is to connect the two 18650 li-ion cells to the board by 
sliding them into the holder making sure to pay attention to the polarity of the cells. After 
that the system will automatically turn on using the relay. It is really that simple just 
make sure to pay attention to the solar panel and cell polarity. 
 

7.2.2. RF system 
The RF system operates on the Raspberry Pi. Running the python script starts up the 
software. There is no interaction needed after that point. 
 

Sensor 
System

Flame 

Volatile 
Organic 

Compounds

Temperature 
& humidity

Smoke
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To ensure that the mesh network can be joined correctly, connect an SX127x module to 
the Raspberry Pi through the following connections (each pin is the BCM pin, not board 
pins): 
MOSI to 10 MISO to 9 SCK to 11 NSS to 8 DIO0 to 4 
DIO1 to 17 DIO2 to 18 DIO3 to 27 RST to 22 LED to 13 (Optional) 

 
The software is no ready to use on a sensing node. The root node needs a similar setup 
but different software. The software files are provided. The root node need only respond 
correctly to join requests for the scope of the prototype. See the included software written 
in Python as an example. 
 

7.2.3. Sensor system 
The following instructions explain how to connect the sensors to the raspberry pi. 
Prior to running any script, it is important to make sure that the I2C bus is enabled in the 
raspberry pi (rasp-config), and that the i2c-tools package is installed in the raspberry pi. 
 
Once this is complete the user can proceed to connect each sensor individually first.  
 
Flame: 
The flame sensor requires 5 connections to the raspberry pi explained in the table below: 
 
Flame sensor pin Raspberry Pi pin 
Vsupply 3.3V 
GND GND 
CS 3.3V 
SCL SCL 
SDA SDA 

 
Once the connections are made, the user can run the i2cdetect -y 1 command on 
terminal/command window and must see the slave address, 0x65. Then the user can run 
the startflame.py python script to initialize the sensor, then the flame.py python script to 
begin reading data and detecting flame. 
 
Smoke: 
The smoke sensor requires 4 connections to the raspberry pi: 
 
Smoke sensor Raspberry Pi pin 
Vsupply 3.3V 
GND GND 
SCL SCL 
SDA SDA 
INT GPCLCK0 

 
The INT pin is an optional connection.  
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Once the connections are made, the user can run the i2cdetect -y 1 command on 
terminal/command window and must see the slave address, 0x57. Then, the user can run 
the smoke.py script to initialize and begin reading data from the smoke sensor.  
 
 
Gas: 
The gas sensor requires 4 connections to the raspberry pi: 
 
Smoke sensor Raspberry Pi pin 
Vsupply 3.3V 
GND GND 
SCL SCL 
SDA SDA 

 
Once the connections are made, the user can run the i2cdetect -y 1 command on 
terminal/command window and must see the slave address, 0x77. Then, the user can run 
the gas.py script to initialize and begin reading data from the smoke sensor 
 
Ensure that the data read from all the sensors are saved in a shared file. This is for the 
system to integrate the data with the computer vision system to output an overall 
confidence score in detecting fire.  
 

7.2.4. Computer Vision System 
 
The computer vision system uses Python 2.7 with Keras 2.1.5, TensorFlow 1.8.0, and 
latest OpenCV compatible with Python 2.7 for Raspberry Pi while Python 3 with Keras 
2.1.5 and TensorFlow 1.8.0 is used for Google Colab deep learning. Installations in 
Raspberry Pi Zero may take several hours which is normal. The correct versions are 
crucial in making the computer vision system work. 
 
Camera should be connected to Raspberry Pi and operable through commands and 
Python file.  
 
As long as the version matches, the trained model should be operable in Raspberry Pi 
Zero but not for real-time use. It is best for Raspberry Pi to access images saved in a 
folder as it has limited processing power.  
 
The testing of the computer vision system is explained in the section 6.3.3. 
 

8. Administrative Content 
 
The following section is a discussion of the administrative content that comes from a 
project. Included will be the division of work, milestones and timelines, information about 
our sponsor work for Siemens and our cost. 
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8.1. Division of Labor 
 
The project was divided into multi sub-parts for each team member to work on and 
specialize. Each subject is not mutually exclusive however, as the team is expected to 
help the others in their designs and research. Table 13 goes into what each team member 
was assigned to accomplish as well as a list that breaks down a little more about what 
that team member is doing specifically. Table 14 provides a detailed description. 
Table 13: Division of Labor 

 Area Focus 

Noora Sensors Hardware & Software  

Nicholas Power & Mechanical Hardware 

Jonathan Control & RF Hardware & Software 

Arisa Data Processing Software 
 

Table 14: Division of Labor Breakdown 

Engineering 
student 

System components Description 

Noora 

Flame Sensors 
Smoke Sensors. 
Gas sensors 
Temperature/Humidity 
sensors 
Data processing 

Noora’s focus was on designing the printed circuit 
board which will include selecting appropriate sensors 
components and ensuring these sensors are able to 
detect fire elements such as flame, smoke, and volatile 
organic compounds, as well as communicate with the 
raspberry pi. Noora worked closely with Arisa to send 
values used in the confidence interval after data 
processing. 

Nicholas 

Solar Panel Power 
Battery Charging 
Protection. 
Power Regulation 

Nicholas was responsible for designing printed circuit 
board that will be used for supplying power to the entire 
system. The system will be powered by a solar panel 
system. Nicholas chose appropriate solar panels that 
will efficiently supply enough power to the system; this 
included selecting the right type, model, and size of 
panels. Subsystems will need a 3.3V and 5V supply, 
thus Nicholas designed the PCB with appropriate 
regulators and rails to ensure the components received 
ample and stable power supply. 
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Jonathan 
Microcontroller Design 
Network Software 
RF Design 

Jonathan was working on the communication between 
the devices. This was done through radio frequency 
using the LoRa RF module. Jonathan designed the 
system to ensure communication between the devices 
is maintained and data from sensors can be sent to the 
hub using RF waves. Jonathan tested the range of the 
system for which data can be sent and design the 
communication network of the system. 

Arisa 

Raspberry Pi Camera, 
Sensor Data 
Processing Software 
Machine Learning’ 
Raspberry Pi 

Arisa was responsible for designing the machine 
learning algorithm that took data from the raspberry pi 
camera and the sensors. By recording and analyzing 
the processed data from the sensors, Arisa trained the 
machine to recognize fire and non-fire conditions using 
an algorithm. This algorithm will determine forest fire 
conditions and recognize all characteristics of fire such 
as flame, smoke, and VOC gasses and visual aspects 
from the camera. The signal will be sent to the 
microcontroller to trigger the fire warning.  

 

 

8.2. Project Milestones 
 

The following two tables provide timeline of the project in Senior Design 1 and 2. Table 9 
was timeline for the spring 2020 semester. During this semester, the background 
research on the project’s need, standards, requirements, hardware components, 
mechanisms of detection, testing environment, sponsor requirements, logistics, feasibility 
is examined through the senior design 1 report. Each peer’s strengths and weaknesses 
were identified to be understand how each individual can contribute to the project. 
Moreover, areas that can be challenged and improved were also identified. Once this was 
recognized, assigning the project tasks and requirement to each peer became a natural 
and organic process. By the end of the spring semester, the group and the sponsor had 
a reasonable understanding of the project’s scope so that the prototyping stage can 
begin.  
 
 
 
 
 
 
 
 
 
Table 15: Spring 2020 Milestones 
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Week Milestone (Tasks) Start Date Deadline 

1 to 2 Brainstorm ideas January 06, 
2020 

January 17, 
2020 

3 to 4 Choose a project and discuss basic 
design and roles 

January 20, 
2020 

January 31, 
2020 

4 Finish Divide and Conquer V1  January 31, 
2020 

5 Discuss the details of the project February 03, 
2020 

February 07, 
2020 

5 to 6 Update Divide and Conquer V2 
Finish proposal for sponsor 

February 03, 
2020 

February 14, 
2020 

6 to 9 Research and fine-tune design February 17, 
2020 

March 06,2020 

9 SPRING BREAK – COVID 19 closure March 09, 
2020 

March 13, 
2020 

10 60-page Draft  March 20, 
2020 

10 to 12 Finalize design 
Finish technical documentation 

March 16, 
2020 

April 03, 2020 

12 100-page Report  April 03, 2020 

12 to 15 Organize all documentations April 06, 2020 April 17, 2020 

15 Submit Final Documentation  April 21, 2020 

 
Table 10 below shows the timeline for the summer 2020 semester. Summer was an 
accelerated semester with 4 weeks less than the other semesters. This leaves less 
opportunity for errors. As a result, after completing a robust report, the summer semester 
marked the beginning of the projects prototyping, testing, and implementation stage. The 
aim was to complete fulfilling the project’s intended purpose by July 20th. This final 
product, as well as electrical and CAD designs were handed off to the sponsor. Moreover, 
the senior design 1 paper will be modified to reflect the project’s realistic achievements.  
 
Due to COVID-19, several delays occurred in the project as a result of social distancing 
and restricted access to the UCF laboratories. Thus, this schedule includes the 
unexpected delays that occurred during the summer 2020 semester. 
 

 

 

Table 16: Summer 2020 Milestones 
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Week Milestone (Tasks) Start Date Deadline 

1 to 3 Acquire initial components and conduct 
initial testing. 

May 11, 2020 May 29, 2020 

4 Critical Design Review 
Presentation preparation and video 
editing  

June 01, 2020 June 05, 2020 

5 Complete KiCad PCB Schematics and 
submit order. Order additional parts and 
replacement parts 

June 08, 2020  June 12, 2020 

6  Hardware and software developments 
 

June 15, 2020 June 19, 2020 

7 Midterm video recording and editing June 22, 2020 June 26, 2020 

8  Midterm demo presentation and meeting June 29, 2020 July 3, 2020 

9 Soldering and integration July 6, 2020 July 10, 2020 

10 Finalize product July 13, 2020 July 17, 2020 

11 Finalize documentation and handover to 
sponsor 

July 20, 2020 July 31, 2020 

 

8.3. Sponsor Information 
8.3.1. Siemens Foundation 

 
Siemens Foundation was founded in 1998 as a non-profit organization in the United 
States [49]. The foundation has invested more than $122 million in the United States to 
foster an inclusive and innovative culture through a variety of professional developments 
programs for the Siemens workforce, STEM outreach activities for youth, and 
scholarships for future students [49].  
 
The most notable program is Siemens STEM day which initially was an event dedicated 
to engaging K-12 students in a variety of hands-on activities through experiments and 
problem-solving exercises. Currently the program has expanded past a one-time event 
to a portal that provides employees access to over 150 STEM activities allowing Siemens 
volunteers to facilitate STEM day activities any time of the year in addition to STEM day 
[49]. These activities range from easy to difficult and revolve around themes popular in 
the industry. The STEM kits target students of all ages, however, there is currently a 
demand for activities that target older students to emphasize various applications of 
scientific knowledge in real life, especially in disciplines that are needed in the US. 
Facilitating these activities is important when considering the demand for STEM 
professionals and closing the opportunity gap for the youth.  
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Figure  75: 30+ Years of Academic Partnership Between Siemens & UCF to foster the goals of Siemens Foundation 
[49] 

 

8.3.2. A Product for Siemens STEM Initiative  
 
Ultimately, the F.I.R.E device will not only serve its purpose of forest fire and detection 
and monitoring, but also will be meticulously designed keeping in mind that the product 
will serve as an introduction to electrical engineering kit. Through this kit, students will 
become exposed to sensor technology, programming and communication through mesh 
network, and an optional hands-on experience soldering parts to a printed circuit board. 
The importance of engaging the youth in STEM related activities has gained traction due 
to the decline in the overall number of students pursuing STEM fields. Thus, exposing 
STEM opportunities to young students, especially to students from marginalized groups, 
is important in encouraging and fostering a culture of innovation, research, and diversity. 
SIEMENS’ STEM initiative is founded on these values. Thus, this product will be designed 
to be used in SIEMENS STEM Day activities to expose students to fundamental concepts 
of electrical engineering and importance of environmental consciousness.  

 
The product is aimed to be utilized as an advanced activity for students ideally between 
the 9 – 12th grade that are in the early stages of exploring and deciding career options to 
pursue after completing high school. This project will help introduce and educate students 
on a leading environmental issue, forest fires, while also demonstrating how electrical 
engineering concepts can be used to solve a growing environmental concern. Moreover, 



138 

 

students will also learn about the fire and gas sensors that are used for SIEMENS gas 
turbines and how their function compares with the sensors designed in the kit. Overall, 
students will gain an understanding of how the system was designed, and how it can be 
implemented. This learning kit will also be a unique exposure to engineering project 
management and execution. 

 
The objectives of the activity are detailed below:  
 
1. Understanding forest fires, their growing intensity, and how fire emissions are 

shaping climate change. 
2. Solving this issue by providing proactive solutions to mitigate the risks. 
3. Understanding the technology used to tackle the issue:  

a. Flame detection (visual and non-visual techniques) 
b. Gas detection 
c. Smoke detection through photoelectric sensors 

4. [Optional] Soldering basic components to a printed circuit board.  
5. Straightforward programming exercise understanding how values are read and 

communicated in a network. 
6. Testing the device and witnessing how it can react to a fire. 

 
At the completion of the project, the final product will be delivered to SIEMENS’ STEM 
initiative group with a detailed lesson activity guide for Siemens employers to use for 
STEM day activities. In addition, the printed circuit board schematic and design, as well 
as any CAD design, will also be provided so that additional boards can be produced for 
enhanced learning activity that incorporates soldering components to the printed circuit 
board.  
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8.3.3. Connection to the Siemens industry 
 

A significant portion of the project’s requirement and the sponsorship from Siemens is not 
only supporting our aspirations of designing this system but also emphasizing how the 
product connects to the Siemens industry in terms of the similarities in the technology 
and strategies used, as well as the potential opportunity for Siemens to utilize this product 
in their industry.  

 
Siemens AG headquarter is in Munich, Germany [49]. It is a multinational conglomerate 
and considered to be one of the largest industrial manufacturing companies in Europe. 
The main industries it is involved in are: Energy, Healthcare, and Infrastructure. The 
Siemens offices in Orlando, FL are primarily focused on power generation, energy 
efficient buildings and infrastructure, wind energy, and healthcare [49]. Its proximity to the 
University of Central Florida has enabled a partnership allowing for $10 million in 
investment for research projects at the university such the Digital Grid Innovation 
Laboratory, Center of Innovation for Diagnostics & Prognostics, and the Siemens Energy 
Center [49].  

  

8.3.3.1. Gas Turbine 
 
Siemens’ gas turbine manufacturing and commissioning is one of the dominating 
businesses in Orlando, FL.  Siemens gas turbines range from 4 – 593 MW and are used 
for a variety of applications including power generation for utilities, independent power 
producers, oil and gas as well as industrial users such as chemicals, pulp and paper, food 
and beverage, sugar, automotive, metal working, mining, cement, wood processing, and 

Figure  76: Overview of Siemens gas turbines [55] 
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textiles. Siemens gas turbines fall into one of three categories: heavy-duty, industrial, or 
aeroderivative [50, 51].  

The primary components of the gas turbine using the Brayton cycle is a compressor, 
combustion chamber, gas turbine, and generator as depicted below. Siemens gas turbine 
control system includes a variety of instruments used to measure the gas turbines 
temperature, pressure, speed, and vibration. The main interest for this project will be the 
temperature sensing of the system for fire and smoke detection. Current temperature 
sensing for the gas turbines includes a gas thermocouple and the infrared temperature 
sensor [52, 53].  
 
A thermocouple is composed of two dissimilar metals connected together creating a 
junction through welding. [52] One end of the connection is taken for reference and other 
end of the junction is used for measurement [52]. Temperature measurement is possible 
when there is temperature difference between the two junctions; this causes an electric 
current to flow in the circuit [52]. By understanding voltage-temperature relationships of 
metal combination, the temperature can be measured [52]. There are many types of 
thermocouples; however, type K thermocouple is commonly used in gas turbines. 
Siemens SGT-A05 KC uses the Measured Gas Temperature (MGT) thermocouple to 
extend the in-service life of the turbine and it is also used in 180 other engines Pictured 
below is the MGT thermocouple [54]. The SGT-A05 KB/KH also uses the TOT 
Thermocouple or the TIT thermocouple to improve overall accuracy in temperature 
monitoring [54].  

Figure  78: Thermocouple used in Siemens SGT [54] 

Figure  77: Typical gas turbine cycle as stated in [52], the figure shows where a fire and gas sensor 
would be needed. 
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Infrared temperature sensors are a good option to use to minimize the contact between 
the sensor and the object it is measuring, which for gas turbines is the blade. Infrared 
sensors function by “focusing the object’s infrared energy onto photodetectors” [52].  
This provides an electrical output signal that is proportional the infrared energy received. 
The infrared energy emits varying levels of infrared energy to the object according the 
temperature which allows for an accurate description of the object’s temperature [52]. 
Siemens SGT-750 uses infrared cameras to measure the temperature of the blade 
surface [52]. Temperature is recorded each rotation and is used for the cooling system 
[52]. Below is an image of the infrared temperature sensor used in the SGT-750.  

 

 
Project F.I.R.E utilizes similar techniques used in the Siemens gas turbine for fire and 
smoke detection. Siemens uses a thermocouple which is a typical choice for a higher 
scale, range, and accuracy for heavy industrial applications. In our project, a temperature 
sensor IC will be utilized since it will help drive the cost and size down for forest fire 
applications. The IR sensor is comparable to the flame detection technique F.I.R.E as it 
involves detecting hidden infrared rays to measure thermal heat of the gas turbine blades. 
 

8.3.3.2. Digitalization/Internet of Things 
 

Figure  79: Infrared temperature sensor used in the SGT-750 [52].  
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A growing field in the industry is the digitalization of many products results in a demand 
for the Internet of Things (IoT). Siemens offers IoT services ranging from Consulting, 
Solution Design, and Solution Development and Implementation which all includes 
Change Management and Cyber Security [55]. There are five phases that Siemens uses 
for successful IoT implementation detailed below in the diagram [55].  
 
IoT as discussed previously in this paper has the potential to digitalize many industries 

including manufacturing, energy utilities, healthcare, transportation and building 
technologies, which are the industries Siemens is mostly tied to. Before the users can 
benefit from the insights of IoT, data must be collected and sent through a gateway data 
communication [55]. The data is then transferred and stored where it can be used to 
conduct data analytics and conduct machine learning algorithms [55]. From here, it can 
be used to provide insight for efficiency and create better business models [55].  

 
Siemens has been heavily involved in IoT as the possibilities of improving business and 
performance for the industries it is involved in are endless. For example, Siemens was 
involved in an air quality monitoring system in the city of Nuremberg. Nuremberg city 
officials were concerned about the air pollution as a result of increased traffic which made 
it difficult for the city to maintain recommended levels of nitrogen dioxide set by the World 
Health Organization [55]. Siemens set up an IoT system that allowed it to collect data 
such as air pollution levels, weather, and traffic patterns from sensors placed around the 
city [55]. This data is then used to forecast the city’s air quality for the next 5 days [55]. 
With this data, the city is able to take appropriate measures to reduce air pollution levels. 
The Siemens City Air Management and the City performance Tool is also able to 
conduction simulations and make long term predictions factoring various parameters such 

Figure  80: IoT integration cycle developed by Siemens 
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as environmental legislature and new technology; they are now able to make predictions 
until the year 2030 with remarkable accuracy [55].  
 
Another case were Siemens was able to utilize IoT was in the case of the Sello shopping 
mall in Finland [55]. The shopping mall wanted to increase its energy efficiency since it 
accommodates more than 24 million shopper every year. Siemens engineers turned the 
mall into a “virtual power plant” and it was able to operate as a load for the Finnish demand 
response markets [55]. 2 MW batteries were installed with a solar panel system that 
included a microgrid with smart building automation and cloud analytics [55]. The process 
took a few years using an iterative approach and followed the five phases depicted in the 
diagram [55]. Sensors were installed in the building management system that measured 
weather data, energy consumption, energy price, weather forecast data and the amount 
of energy stored in the battery [55]. By using smart analytics, an algorithm was designed 
to determine whether energy should be drawn from the solar panels, the 2-MW battery 
(stored energy), or the national energy provider when electricity rates are low [55]. This 
implementation helped reduce carbon emissions and saved the business €643,000 
($690,00) [55].  

 

8.3.3.2.1. Siemens IoT implementation phases in F.I.R.E. 
 

Interestingly, this project will adopt similar phases during its life cycle, which is an 
important connection this project has to Siemens’ current IoT practices. In the initial 
phase, this project underwent strategy development where the best method of fire 
detections was investigated. This included identifying mechanisms and principles of 
detection that are used in the industry. The challenges were also explored, such as range 
and scalability during this phase. Most importantly was also determining how this project 
provides a value not only for us, but also Siemens and how this project aligns with the 
ambitions of the Siemens Foundation and the Siemens’s industry goals.  
 
Once the idea was established, the technical implementation next stage is followed. As 
mentioned, Siemens is our customer and they are at the center of our focus. Their 
requirements are to create a solar powered forest fire detection and monitoring system 
that will also be used as STEM kit to educate the youth on electrical engineering concepts, 
and also how the technology and implementation relates to the industry. Another crucial 
requirement is heeding their budget requirement of approximately $500. Furthermore, the 
university (UCF) is also our customer because they are expecting a senior design project 
that fulfils the criteria set by Accreditation Board of Engineering and Technology. Lastly, 
this product has potential to be used in the industry, therefore government of countries 
experiencing forest fires as well as the authorities that protect reservations that are likely 
to experience forest fires are our unheard audience; we are not able to interact with them 
directly, however we have built our assumptions based on their experiences and the 
technologies they have used for forest fire detection and past research.  

 
By integrating these three audiences’ concerns, demands, and needs as well as our own 
skills set and experience, we are able to identify a reasonably sound solution and initiate 
the first prototype. The protype will be used to gather as much data possible; in this 
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project’s case once the sensors have been selected and are fully functional, the sensors 
will begin accumulating temperature, humidity, pressure, gas concentration levels, smoke 
and flame conditions. This historic data will be useful for mathematical and statistical 
methods to determine an algorithm than assess various parameters and identify similar 
patterns in the data set. Machine learning will be used to train the model and improve 
prediction outcomes. 

 
The third stage involved connecting, adapting, and integrating systems. The main 
components in this process include the sensors, communication networks, cloud 
infrastructure and IoT platforms and applications. In this process the data gathered from 
the sensors can be sent to other devices and the main hub which will house all the 
database. The communication protocol becomes vital as it determines range, latency, 
data volume, and transmission frequency. The F.I.R.E system uses RF communication 
from the LoRa module which accounts for each of these factors. The database has yet to 
be established for this project however the two options will mostly like be either premise-
based or cloud-based. Communication is vital however it is also important that the data 
from the various sources are in a uniform language in order for it to be processed to a 
device or cloud.  Once the machine learning algorithms are able to model and predict the 
data, the outcome will be presented in a visually clear manner for the user to understand.  

 
The fourth stage used in Siemens IoT implementation which will be followed in project 
F.I.R.E is analyzing the data. As mentioned, the data needs to be easy to read and 
understand so that appropriate action can be taken with the information provided. In this 
stage it is important to differentiate between correlation and causality. Correlation is a 
statistical measure to observe the relationship between two variables; the relationship 
can be random without grounds for a direct cause. As a result, correlation can produce 
noise in the data which can lead to less accurate predictions and outcomes. Causality is 
a relationship that describes the cause-effect connection. Therefore, during this stage is 
important to interpret the data logically to avoid misrepresentation and to continually train 
the system to improve and optimize models to avoid false-positive outcomes of a fire.  

 
The final stage is operation. Once the system is operating successfully, it will be important 
to maintain it regularly to avoid malfunctions. With respect to the F.I.R.E project, this 
device will be handed off to Siemens to use for future STEM events potentially 
manufacture more STEM kits in the future. To ensure proper maintenance and use is 
observed, a guide will be provided with the step-by-step procedure of operating the 
system and testing it under various conditions. This guide will be a combination of written 
material and video tutorials to ensure it can be properly understood and avoid vague 
rhetoric. It will be targeted towards Siemens engineers who will be conducting the 
activities and will be responsible for maintaining the system’s operational standards.  
 
 

8.3.3.3. Siemens Gamesa: Wind Turbines 
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In 2016, Siemens announced it would merge it wind businesses with Gamesa with a 59%-
41% split between the two shareholders [56]. Siemens Gamesa is one of the leading 
manufacturers and suppliers in the world for wind turbines. Siemens Gamesa have 
installed wind turbine technology in over 90 countries with base capacities exceeding 
99GW [56]. Siemens Gamesa’s businesses is primarily focused in onshore and offshore 
wind turbines and service maintenance. They are situated globally and also have an office 
in Orlando, FL. 
 
 
Like gas turbines, wind turbines need to be maintained and protected to ensure optimal 
performance. Gas turbines are more likely to catch fire because the nature of the fuel is 
highly flammable [57]. With wind turbines, although it is not powered by a flammable 
source, the wind turbine system still needs to be designed with a fire detection system  

 
 

since it is designed with various mechanical and electrical components where a potential 
malfunction could start a fire [57]. Most wind farms in isolated areas and the possibility of 
a turbine being struck by lightning is also a concern. Earlier in February 2020 there was 
a turbine rotor that caught fire in a wind farm in northeastern Brazil; the turbine was a 
2MW G97 Siemens Gamesa turbine [58]. Similarly, a G80 2MW wind turbine caught fire 
in Japan in 2017 [59]. The issue with fires in wind turbines is they become difficult to save 
the turbine once it catches fire, especially if the source of the fire is in the nacelle as 
shown in the figure [57]. Repair costs are very high and put technicians who must conduct 
the offshore repairs at risk of injury or death [57]. Most wind turbines include fire-protection 
products which include circuit breakers, semiconductor protection fuses, differential 
current monitoring devices, measuring instrumented for power monitoring, residual-
current devices, and busbars [57]. Graduated protection is also an additional measure 

Figure  81: Nacelle of a wind turbine where the AFFS is installed 
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taken to avoid turbine failures; this includes disconnecting defective systems from the grid 
earlier on to avoid a fire from igniting [57].   
 
In 2014, Siemens Building Technologies Division announced it developed automatic fire-
extinguishing system for off-shore turbines and the new system would be installed at 
Riffgat project in the German North Sea [60]. The Active Fire Fighting System (AFFS) 
works by detecting fires by reading sensor signals from the Advanced Signal Analysis 
(ASA) fire detectors to alert the system of a fire in a nacelle or tower [60]. The system 
then activates nitrogen gas to extinguish the fires, operating on principles of oxygen 
displacement, using the Sinorix gas fire extinguishing system [60]. The turbine is shut 
down until the fire is extinguished. An advantage to this system is that it does not produce 
false alarms and low maintenance and resistant [60]. The added extinguishing feature 
prevents the fire from spreading nearby and reduces the need for fire helicopters [57]. 
Moreover, the operators can remotely access the system and identify the source of the 
fire from the control station which will allow turbines to resume activity as soon as 
possible. For added safety two AFFS systems are installed in a turbine: in the nacelle and 
in the tower, both operate independently in the event of a power failure or network outage. 
Currently, the AFFS system is in operation in 30 wind turbines [60]. Siemens was 
recognized as the first company to test and approve a fire detection and extinguishing 
system for wind turbine equipment; it has been certified by VdS Schadenverhütung GmbH 
and approved by Germanischer Lloyd [60].  
 

             
Figure  82: ASA fire detectors by Siemens              Figure  83:Sinorix fire extinguisher used by Siemens 

Siemens AFFS fire detection and prevention system holds many similarities to our device. 
The system uses a similar technique of installing sensors that read and process data of 
the current conditions and an algorithm is then used to identify probably cases of a fire. 
One distinguishing feature that the AFFS device has is that it is paired with an 
extinguishing feature for swift prevention of the fire spreading [60]. This feature was a 
potential feature we had also considered but it was ruled out on the basis that the 
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extinguishing gasses could harm the wildlife, animals, and the forest environment. Thus, 
it was decided that extinguishing the fire was outside the scope of this project and could 
perhaps be further researched using drones. However, this difference is mainly attributed 
to the fact that the intended purpose of the AFFS system is for wind turbines that typically 
located in remote areas. This simply establishes the importance of recognizing the 
planned purpose of the product and how it is integrated during the design and prototyping 
process. 
 

8.4. Estimated Cost 
 
The table below, Table 17, provides the estimated list of costs associated with the project. 
A major target of the project is delivering a system that is cost effective while maintaining 
product performance. Based on preliminary research and experience, an estimated cost 
breakdown was prepared. The data included in the table is a rough cost estimate on all 
items that were purchased to build the prototype. Initially, the supposed was supposed to 
be composed of 3 to 4 devices that will communicate data with each other. However, due 
to cost constraints and limited resources and equipment from the COVID-19 lockdown, 
only one prototype could be built. Thus, the cost below illustrates the total cost of 
designing and implementing one prototype.  

 
The table acts as a guide to see the general cost for the system. Cost is determined by 
the distributor price when purchasing a single item, not in bulk. As we progressed further 
into the project, potential areas to cut cost became apparent through careful research, 
design, and testing.  
 
Table 17: Estimated Cost 

Item Estimated Cost ($) 

Solar Panel System 100 

Sensors*  

Gas sensors + Temperature + Humidity sensor 22 

Flame sensor 41 

Particle sensors (smoke detection) 16 

Raspberry pi camera 10 

Communication system (RF and controllers) 68 

Electronics*  

General components  
(resistor, capacitors, inductors, connectors, jumper wires) 

30 

PCB manufacturing 75 
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Shipping costs 40 

Backup parts 70 

Total Cost** ≈ $472 
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Appendix A: Sponsor Branding Approval 
 
 

  



150 

 

 

Appendix B:  References 
 

[1]  S. Ouni, Z. T. Ayoub and F. Kamoun, "Auto-organization approach with adaptive 
frame periods for IEEE 802.15.4/zigbee forest fire detection system.," 16 Jan. 2019. 
[Online]. Available: https://doi.org/10.1007/s11276-018-01936-x. [Accessed 30 Jan. 
2020]. 

[2]  M. Jurvélius, "FOREST FIRES AND INTERNATIONAL ACTION," 2003. [Online]. 
Available: http://www.fao.org/3/XII/0820-B3.htm. [Accessed 30 Jan. 2020]. 

[3]  A. A. Alkhatib, "Forest Fire Monitoring," 20 Dec. 2017. [Online]. Available: 
https://www.intechopen.com/books/forest-fire/forest-fire-monitoring. [Accessed 30 
Jan. 2020]. 

[4]  United Nations Enviroment Programme, "Governments, smart data and wildfires: 
where are we at?," 3 Jan. 2020. [Online]. Available: 
https://www.unenvironment.org/news-and-stories/story/governments-smart-data-
and-wildfires-where-are-we. [Accessed 30 Jan. 2020]. 

[5]  ASQ, "House of Quality Tutorial - How to Fill Out a House of Quality | ASQ," 2020. 
[Online]. Available: https://asq.org/quality-resources/house-of-quality. 

[6]  RoHS, "RoHS Guide," 2005. [Online]. Available: https://rohsguide.com/rohs-faq.htm. 
[Accessed 4 Mar. 2020]. 

[7]  IPC-2221, "Generic Standard on Printed Board Design," Feb. 1998. [Online]. 
Available: http://www.ipc.org/TOC/IPC-2221.pdf. [Accessed 5 March 2020]. 

[8]  Electronic Code of Federal Regulations, "e-CFR," 28 May 1996. [Online]. Available: 
https://www.ecfr.gov/cgi-bin/text-
idx?SID=7248d37fdd25d0947f5611197fd5c6c8&mc=true&node=se47.5.101_1113&
rgn=div8. [Accessed 17 March 2020]. 

[9]  K. Nörthemann, J.-E. Bienge, J. Müller and W. Moritz, "Early forest fire detection 
using low-energy hydrogen sensors," 1 Nov. 2013. [Online]. Available: 
https://pdfs.semanticscholar.org/b807/d5144095c15f7805fd272cb71a8a023a9516.p
df. [Accessed 30 Jan. 2020]. 

[10]  "Arduino fire alarm system using temperature and smoke sensor with Android 
connectivity," Microelectronics Technologies, [Online]. Available: 
https://www.projectsof8051.com/arduino-fire-alarm-system-using-temperature-and-
smoke-sensor-with-android-connectivity/. [Accessed 4 Mar. 2020]. 

[11]  Bluetooth, "Understanding Bluetooth Range," 2020. [Online]. Available: 
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/range/. 
[Accessed 30 Jan. 2020]. 

[12]  F. Leens, "An introduction to I2C and SPI protocols," Feb. 2009. [Online]. Available: 
https://ieeexplore-ieee-org.ezproxy.net.ucf.edu/document/4762946. [Accessed 30 
Jan. 2020]. 

[13]  A. Gaur, A. Singh, A. Kumar, K. S. Kulkarni, S. Lala, K. Kapoor, V. Srivastava, A. 
Kumar and S. C. Mukhopadhyay, "Fire Sensing Technologies: A Review," 1 May 



151 

 

2019. [Online]. Available: https://ieeexplore.ieee.org/document/8625538. [Accessed 
19 Mar. 2020]. 

[14]  J. Fonollosa, A. Solorzano and S. Marco, "Chemical Sensor Systems and 
Associated Algorithms for Fire Detection: A Review," 2018. [Online]. Available: 
https://www.mdpi.com/1424-8220/18/2/553. [Accessed 30 Jan. 2020]. 

[15]  M. Y. J. D. Y. Z. Liqiang Wang, "Hybrid fire detection using hidden Markov model 
and luminance map," Computers and Electrical Engineering, vol. 37, pp. 905-915, 
2011.  

[16]  ScienceDirect, "Kevlar," [Online]. Available: 
https://www.sciencedirect.com/topics/engineering/kevlar. [Accessed 1 April 2020]. 

[17]  Jamestown Distributors, "Kevlar Cloth - Plain Weave," [Online]. Available: 
https://www.jamestowndistributors.com/userportal/show_product.do?pid=4022. 
[Accessed 18 March 2020]. 

[18]  WallpaperAccess, "Carbon Fiber," [Online]. Available: 
https://wallpaperaccess.com/carbon-fiber. [Accessed 18 March 2020]. 

[19]  J. Tan, "How to Choose Battery for Your Emergency Lighting Wisely?," 29 Sept. 
2019. [Online]. Available: www.sanforce-tech.com/how-to-choose-suitable-battery-
emergency-lighting-wisely/. 

[20]  F. Leng, C. M. Tan and M. Pecht, "Effect of Temperature on the Aging rate of Li Ion 
Battery Operating above Room Temperature," 6 Aug 2015. [Online]. Available: 
https://www.nature.com/articles/srep12967. [Accessed 16 April 2020]. 

[21]  J. Donovan, "Selecting Antennas for Embedded Designs," Convergence Promotions 
LLC, 08 11 2012. [Online]. Available: https://www.digikey.com/en/articles/selecting-
antennas-for-embedded-designs. 

[22]  A. Designer, "Embedded RF Design: Ceramic Chip Antennas vs. PCB Trace 
Antennas," Altium Designer, 16 2 2018. [Online]. Available: 
https://resources.altium.com/p/embedded-rf-design-ceramic-chip-antennas-vs-pcb-
trace-antennas. 

[23]  J. Redmon, "YOLO: Real-Time Object Detection," arXiv, 2018. [Online]. Available: 
https://pjreddie.com/darknet/yolo/. [Accessed 27 Feb. 2020]. 

[24]  A. Kathuria, "How to implement a YOLO (v3) object detector from scratch in 
PyTorch: Part 1," PaperspaceBlog, 16 Apr. 2018. [Online]. Available: 
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/. 
[Accessed 27 Feb. 2020]. 

[25]  M. Sandler, "MobileNet," 12 Nov. 2019. [Online]. Available: 
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/REA
DME.md. [Accessed 28 Feb. 2020]. 

[26]  A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. 
Pang, V. Vasudevan, Q. V. Le and H. Adam, "Searching for MobileNetV3," 6 May 
2019. [Online]. Available: https://arxiv.org/abs/1905.02244. [Accessed 28 Feb. 
2020]. 

[27]  Keras, "Keras: The Python Deep Learning library," [Online]. Available: 
https://keras.io/. [Accessed 29 Feb. 2020]. 



152 

 

[28]  PyTorch, "PyTorch: From Reasearch to Production," [Online]. Available: 
https://pytorch.org/. 

[29]  n. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. 
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, M. Irving, Y. Jia, R. 
Jozefowicz, L. Kaiser, M. Kudlur, J. Levenburg, D. Man, R. Monga, S. Moore, D. 
Murry, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. 
Tucker, V. Vanhoucke, V. Vasudevan, F. Vi, O. Vinyals, P. Warden, M. Wattenburg, 
M. Wicke, Y. Yu and X. Zheng, "TensorFlow," 2015. [Online]. Available: 
https://www.tensorflow.org/lite. 

[30]  OpenCV, "Open Source Computer Vision," 18 April 2020. [Online]. Available: 
https://docs.opencv.org/3.4/df/d6c/group__ximgproc__superpixel.html. [Accessed 
18 April 2020]. 

[31]  N. True, "Computer Vision Based Fire Detection," University of California, La Jolla, 
CA. 

[32]  C. Yu, Z. Mei and X. Zhang, "A Real-time Video Fire Flame and Smoke Detection 
Algorithm," 14 Aug. 2013. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/S1877705813013222. [Accessed 
28 Feb. 2020]. 

[33]  "Optical Flow," [Online]. Available: https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_k
anade.html. 

[34]  A. J. Dunnings and T. P. Breckon, "EXPERIMENTALLY DEFINED 
CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE VARIANTS FOR NON-
TEMPORAL REAL-TIME FIRE DETECTION," [Online]. Available: 
https://breckon.org/toby/publications/papers/dunnings18fire.pdf. [Accessed 18 April 
2020]. 

[35]  A. Deshmukh, T. Breckon and A. Dunnings, "fire detection cnn," 19 Dec 2019. 
[Online]. Available: https://github.com/tobybreckon/fire-detection-cnn. [Accessed 18 
April 2020]. 

[36]  A. Rosebrock, "Fire and smoke detection with Keras and Deep Learning," 18 
November 2019. [Online]. Available: 
https://www.pyimagesearch.com/2019/11/18/fire-and-smoke-detection-with-keras-
and-deep-learning/. 

[37]  M. R. M. F. R. Errynando Surya Sasmita, "Integrating Forest Fire Detection with 
Wireless Sensor Network Based on Long Range Radio," in The 2018 International 
Conference on Control, Electronics, Renewable Energy and Communications, 
Bandung, 2018.  

[38]  Y. E. Aslan, I. Korpeoglu and Ö. Ulusoy, "A framework for use of wireless sensor 
networks in forest fire detection and monitoring," Nov. 2012. [Online]. Available: 
https://doi.org/10.1016/j.compenvurbsys.2012.03.002. [Accessed 30 Jan. 2020]. 

[39]  S. Bouckaert, E. D. Poorter, P. D. Mil, I. Moerman and P. Demeester, 
"Interconnecting Wireless Sensor and Wireless Mesh Networks: Challenges and 
Strategies," 2009. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/5425861. [Accessed 30 Jan. 2020]. 



153 

 

[40]  IEEE, "Integrating Forest Fire Detection with Wireless Sensor Network Based on 
Long Range Radio," 2018 International Conference on Control, Electronics, 
Renewable Energy and Communications (ICCEREC), 2018. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/8711991. [Accessed 30 Jan. 2020]. 

[41]  M. Rouse, "internet of things (IoT)," TechTarget, 2 2020. [Online]. Available: 
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT. 

[42]  Semtech, "AN1200.22 LRa Modulation Basics," Semtech, Camarillo, CA, 2015. 

[43]  S. Ghoslya, "LoRa: Symbol Generation," [Online]. Available: 
https://www.sghoslya.com/p/lora-is-chirp-spread-spectrum.html. 

[44]  Bosch, "Low Power Gas, Pressure, Temperature and Humidity Sensor," [Online]. 
Available: https://cdn-shop.adafruit.com/product-files/3660/BME680.pdf. [Accessed 
1 April 2020]. 

[45]  PYREOS, "AN136 Application Note: Understanding pyroelectric infrared detectors," 
2020. [Online]. Available: https://pyreos.com/wp-content/uploads/2020/01/AN136-
Understanding-pyroelectric-infrared-detectors.pdf. 

[46]  PYREOS, "ezPyroTM SMD I2C Pyroelectric Infrared Sensor," 22 June 2018. 
[Online]. Available: https://forum.pycom.io/assets/uploads/files/1585523830287-
sensor_datasheet-min-3.pdf. [Accessed 20 May 2020]. 

[47]  A. Rosebrock, "How to (quickly) build a deep learning image dataset," 9 April 2018. 
[Online]. Available: https://www.pyimagesearch.com/2018/04/09/how-to-quickly-
build-a-deep-learning-image-dataset/. 

[48]  J. M. LEE, "Fighting Fire with Fire: How Controlled Burns Keep Us Safe," 14 
January 2020. [Online]. Available: https://www.ucf.edu/news/fighting-fire-with-fire/. 
[Accessed 10 April 2020]. 

[49]  Siemens STEM Day, "Siemens Stem Day," [Online]. Available: 
http://www.siemensstemday.com/. [Accessed 18 April 2020]. 

[50]  Siemens, "Siemens Gas Turbines," 2019. [Online]. Available: 
https://assets.new.siemens.com/siemens/assets/api/uuid:10f4860b140b2456f05d32
629d8d758dc00bcc30/gas-turbines-siemens-interactive.pdf. [Accessed 18 April 
2020]. 

[51]  G. K. C. S. a. N. T. Nancy H Ulerich, "CONDITION BASED MONITORING OF GAS 
TURBINE COMBUSTION COMPONENTS," Siemens Energy, Inc., Jenetek 
Sensors, Inc., K Science, GP LLC., Orlando, Waltham, San Antonio, 2013. 

[52]  C. Isiadinso, "TEMPERATURE, PRESSURE, & SPEED SENSING SYSTEMS OF A 
GAS TURBINE FIRST STAGE ROTOR BLADE," Sensor Systems, p. 2015, 24 
November 2015.  

[53]  M. H. RAITHATHA, "SIEMENS-UV OPTICAL FLAME DETECTION," College of 
Engineering University of California, Berkley, 2013. 

[54]  Siemens AG, "Siemens Assets," 2019. [Online]. Available: 
https://assets.new.siemens.com/siemens/assets/api/uuid:d9283b58-4f74-4f05-a8fb-
0ccf0439ee82/version:1557162462/sgt-a05-service-solutions-2019.pdf. [Accessed 
18 April 2020]. 



154 

 

[55]  Siemens, "Siemens IOT Assest," 1 April 2019. [Online]. Available: 
https://assets.new.siemens.com/siemens/assets/api/uuid:131ac2f9-5e8b-4968-ba2f-
734eefccdb50/version:1556633115/turning-iot-into-reality-whitepaper-by-siemens-
iot-services-fina.pdf. [Accessed 18 April 2020]. 

[56]  Siemens Gamesa, "Siemens Games Renewable Energy," [Online]. Available: 
https://www.siemensgamesa.com/en-int/about-us. [Accessed 18 April 2020]. 

[57]  M. Froese, "Fire prevention and protection for wind turbines offshore and on," 24 
June 2016. [Online]. Available: https://www.windpowerengineering.com/fire-
prevention-protection-wind-turbines-offshore/. [Accessed 18 April 2020]. 

[58]  A. Spatuzza, "Recharge News," 3 February 2020. [Online]. Available: 
https://www.rechargenews.com/wind/siemens-gamesa-investigates-after-wind-
turbine-rotor-crash-in-brazil/2-1-749505. [Accessed 18 April 2020]. 

[59]  M. Foster, "Gamesa turbine catches fire in Japan," 22 August 2017. [Online]. 
Available: https://www.windpowermonthly.com/article/1442624/gamesa-turbine-
catches-fire-japan. [Accessed 18 April 2020]. 

[60]  K. Garus, "Siemens' fire detection and extinguishing system is certified," 23 July 
2013. [Online]. Available: https://www.offshorewindindustry.com/news/siemens-fire-
detection-and-extinguishing. [Accessed 18 April 2020]. 

[61]  D. Zima, "Lora Best Design Practices EMC Compliance," in Lora Workshop, UCF, 
Orlando, 2020.  

[62]  T. X.-P. Zhao, S. Acherman and G. Wei, "Dust and Smoke Detection for Multi-
Channel Imagers," Oct. 2010. [Online]. Available: 
https://www.researchgate.net/publication/47380702_Dust_and_Smoke_Detection_f
or_Multi-Channel_Imagers. [Accessed 19 March 2020]. 

[63]  X. Xu, "Everitt's blog," github, 10 Aug. 2018. [Online]. Available: 
https://everitt257.github.io/post/2018/08/10/object_detection.html. [Accessed 27 
Feb. 2020]. 

[64]  Z. A. S. Syed, "Frequency, Range and type of Wireless Communication," in NSA, 
University of Oslo, 2016.  

[65]  S. S. Roy, "Real-Time Object Detection on Raspberry Pi Using OpenCV DNN," 23 
Oct. 2018. [Online]. Available: https://heartbeat.fritz.ai/real-time-object-detection-on-
raspberry-pi-using-opencv-dnn-98827255fa60. [Accessed 28 Feb. 2020]. 

[66]  S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object 
Detection with Region Proposal Networks," Cornell University, Ithica, New York, 
2016. 

[67]  J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," Cornell 
University, Ithaca, New York, 2018. 

[68]  H. W. Ott, "Henry Ott Consultants," 14 Feb. 2001. [Online]. Available: 
http://www.hottconsultants.com/techtips/freq-wavelength.html. [Accessed 8 March 
2020]. 

[69]  J. Noci, "Antenna Design Overview — Copter documentation," Ardupilot.org, 2020. 
[Online]. Available: https://ardupilot.org/copter/docs/common-antenna-design.html. 
[Accessed 10 March 2020]. 



155 

 

[70]  A. Mordvintsev and A. K., "OpenCV-Python Tutorials," 2013. [Online]. Available: 
https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_k
anade.html. [Accessed 29 Feb. 2020]. 

[71]  H. Friis, A Note on a Simple Transmission Formula, IRE Proc.: 254–256, 1946.  

[72]  L. E. Frenzel, "Welcome To Antennas 101," Electronic Design, 13 Aug. 2008. 
[Online]. Available: 
https://www.electronicdesign.com/technologies/passives/article/21769333/welcome-
to-antennas-101. [Accessed 12 March 2020]. 

[73]  E. Edje, "Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi," 
19 Oct. 2019. [Online]. Available: https://github.com/EdjeElectronics/TensorFlow-
Object-Detection-on-the-Raspberry-Pi/blob/master/README.md. [Accessed 28 
Feb. 2020]. 

[74]  W. De-Chang, X. Cui, E. Park and C. Jin, "Adaptive flame detection using 
randomness testing and robust features," Oct. 2013. [Online]. Available: 
https://www.researchgate.net/publication/257410367_Adaptive_flame_detection_usi
ng_randomness_testing_and_robust_features. [Accessed 19 Mar. 2020]. 

[75]  RF Wireless World, "Smoke Detector basics | Smoke Detector types," [Online]. 
Available: https://www.rfwireless-world.com/Articles/smoke-detector-basics-and-
smoke-detector-types.html. [Accessed 19 Mar. 2020]. 

[76]  IEEE Std 145-1993(R2004), IEEE Standard Definitions of Terms for Antennas., New 
York, NY: The Institute of Electrical and Electronics Engineers, 1993.  

[77]  Legal Information Institute, "47 CFR § 15.209 - Radiated emission limits; general 
requirements.," 2020. [Online]. Available: 
https://www.law.cornell.edu/cfr/text/47/15.209. [Accessed 10 March 2020]. 

[78]  "This Plastic’s on Fire! 4 Types of Flame Retardant Plastic Additives," Craftech 
Industries, [Online]. Available: https://www.craftechind.com/this-plastics-on-fire-4-
types-of-flame-retardant-plastic-additives/. [Accessed 1 April 2020]. 

[79]  P. Smith, "Siemens develops automatic offshore fire-fighting system," 17 February 
2014. [Online]. Available: 
https://www.windpowermonthly.com/article/1281184/siemens-develops-automatic-
offshore-fire-fighting-system. [Accessed 18 April 2020]. 

[80]  Melexis, "MLX90640 32x24 IR array," 2012. [Online]. Available: 
https://www.melexis.com/en/documents/documentation/datasheets/datasheet-
mlx90640. [Accessed 1 April 2020]. 

 
 

 


