
i

F.I.R.E: Fire Intelligent Response Equipment
Department of Electrical Engineering and Computer Engineering
Senior Design II Project Report, Group 4, Summer 2020

Noora Dawood – Electrical Engineering

Nicholas Hainline – Electrical Engineering

Jonathan Kessluk – Computer Engineering

Arisa Kitagishi – Computer Engineering

The Siemens and STEM@SIEMENS logo are reprinted with permission from Siemens / STEM @ Siemens.
This is a project sponsored by Siemens and is not a Siemens Publication.

ii

Table of Contents
Table of Contents ...ii

Table of Figures ... v

Index of Tables ..vi

1. Executive Summary ... 1

2. Product Description .. 1

2.1. Motivation ... 1

2.2. Goals and Objectives .. 2

2.3. Requirements and Specifications.. 2

2.4 House of Quality .. 3

3. Design Constraints and Standards ... 5

3.1. Table of Standards .. 5

3.2. Other Safety Concerns ... 5

3.2.1. RoHS .. 6

3.2.2. Battery Safety ... 6

3.2.3. Electrical Safety .. 6

4. Research and Background Information .. 6

4.1. Current Fire Detection Systems .. 6

4.1.1. Products Used in the Industry .. 7

4.1.2. Similar Project .. 7

4.2. Background Research .. 8

4.2.1. Serial Communication Protocols .. 9

4.2.2. Sensors .. 11

4.2.3. Fire Resistant Enclosure Materials ... 18

4.2.4. Battery Charging and Battery Chemistries ... 20

4.2.6. Power Supply Topology ... 24

4.2.7. Solar Array Design ... 26

4.2.8. RF Design and Frequency Selection .. 27

4.2.9. Machine Learning/ Computer Vision .. 30

4.3. Component Research ... 44

4.3.1. Controller Selection .. 44

4.3.2. Radio Frequency Communication Technology 45

4.3.3. Fire Detection Sensors ... 46

4.3.4. Software Tools ... 52

iii

4.4. LoRa ... 56

4.4.1. LoRa Overview and Definition of IoT .. 56

4.4.2. Quick Discussion of Common Modulation Techniques 57

4.4.3. Chirp Spread Spectrum Modulation (CSS) & LoRa 57

5. Design .. 58

5.1. Use Cases .. 59

5.1.1. Uses Case Diagram ... 59

5.1.2. Functional Design ... 59

5.2. Hardware Design .. 60

5.2.1. Hardware Block Diagram ... 60

5.2.2. Microcontroller and Processing Device .. 61

5.2.3. Hardware Schematics .. 61

5.2.4. Mechanical Design ... 68

5.3. Software Design.. 71

5.3.1. Design Methodology ... 71

5.3.2. Software Block Diagram ... 94

5.3.3. Network Software ... 94

5.3.4. Software Events & Flow ... 99

5.3.5. Non-Volatile Storage of Configuration & Packet Buffer Loss 103

5.3.6. Network Packet Types ... 104

5.4. Computer Vision ... 105

5.4.1. Color Classification plus Optical Flow .. 106

5.4.2. Machine Learning with Raspberry Pi Zero ... 107

5.4.3. Final Design of Computer Vision .. 109

6. Testing and Prototyping ... 109

6.1. From Nothing to Something .. 110

6.1.1. Power Subsystem .. 110

6.1.2. Sensor Subsystem ... 110

6.1.3. Network Subsystem ... 111

6.1.4. Processing Subsystem ... 112

6.2. Step-by-Step Hardware Test Plan .. 113

6.2.1. Power ... 113

6.2.2. Hardware Sensor Testing ... 114

6.2.3. Controllers .. 115

iv

6.2.4. Radio Frequencies ... 115

6.3. Step-by-Step Software Test Plan .. 116

6.3.1. Connection Between the Hardware and Software 116

6.3.2. Software Development for Sensors from Hardware Testing 116

6.3.3. Computer Vision ... 118

6.3.4. Networking ... 120

6.4. Prototype Construction ... 120

6.4.1. Equipment .. 120

6.4.2. Bill of Materials ... 121

6.5. Testing Environment ... 127

7. System Integration ... 128

7.1. System Design .. 128

7.1.1. Sub-System Connections ... 129

7.2. System Operation ... 129

7.2.1. Power system ... 130

7.2.2. RF system .. 130

7.2.3. Sensor system .. 131

7.2.4. Computer Vision System .. 132

8. Administrative Content ... 132

8.1. Division of Labor ... 133

8.2. Project Milestones ... 134

8.3. Sponsor Information .. 136

8.3.1. Siemens Foundation .. 136

8.3.2. A Product for Siemens STEM Initiative .. 137

8.3.3. Connection to the Siemens industry ... 139

8.4. Estimated Cost.. 147

Appendix A: Sponsor Branding Approval .. 149

Appendix B: References .. 150

v

Table of Figures
Figure 1: House of Quality .. 4
Figure 2: Arduino Uno being used in a similar project [10] ... 8
Figure 3: SPI Topology [12] .. 9
Figure 4: I2C Topology ... 10
Figure 5: Timing Diagram of I2C [12] ... 11
Figure 6: Acoustic gas detection method [13] .. 13
Figure 7: Visual representation of photoelectric smoke detection [13] 14
Figure 8: Hidden Markov model used to detect flame flicker [15] 16
Figure 9: Convolution neural networks approach layers [13] .. 17
Figure 10: Example of the Wald-Wolfwitz randomness test being used for flame
detection .. 18
Figure 11: Synthetic Fiber Kevlar [17] .. 19
Figure 12: Carbon Fiber Weave [18] .. 20
Figure 13: Maximum Charge/Discharge Cycles Versus Battery Type [19] 20
Figure 14: Self-Discharge Rates of Batteries [19] .. 21
Figure 15: Temperature Vs Charge [20] ... 22
Figure 16: Temperature Vs Time (cycles) [20] ... 23
Figure 17: Azimuth and Elevation .. 27
Figure 18: Signal Attenuation Vs Distance of Different Frequencies 29
Figure 19: Comparison of other state-of-art models on the COCO dataset [23] 31
Figure 20: YOLO Bounding Boxes [24] .. 32
Figure 21: Comparison between MobileNetV2 and MobileNetV3 [26].......................... 33
Figure 22: Frame Differencing [31] ... 35
Figure 23: Frame differencing continued [32] .. 36
Figure 24: Color Classification and finding contours using OpenCV [30] 37
Figure 25: Color of Fire Classification [31] ... 38
Figure 26: Dense Optical Flow [33] .. 39
Figure 27: Superpixel Localization from Durham University [34] 40
Figure 28: FireNet Architecture [35] ... 40
Figure 29: InceptionV1-OnFireNet Architecture [35] .. 41
Figure 30: Implementation of Superpixel Localization with CNN [35] 41
Figure 31: Superpixel Localization using OpenCV ... 42
Figure 32: Hydrogen sensor mounted to a tree during an experiment done in Humboldt
University in Berlin, Germany. [9] .. 46
Figure 33: FireWatch adopts a similar concept to our method of scattering sensors in a
forest, except their system uses cameras [3] .. 47
Figure 34: Spectrogram of LoRa physical layer [43] .. 58
Figure 35: Use Case Diagram .. 59
Figure 36: Hardware Design Block Diagram .. 60
Figure 37: RF Switch Schematic .. 62
Figure 38: SAMR35 Schematic .. 62
Figure 39: SAMR35 Peripheral Components ... 63
Figure 40: Raspberry Pi Connection Preliminary Schematic .. 64
Figure 41: Raspberry Pi Relay Power Circuit ... 64
Figure 42: Voltage Regulator Schematic .. 65

https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%202/Final%20Documentation/SD2%20Paper/SD2%20Final%20Paper%20Fixed.docx#_Toc46703514

vi

Figure 43: Top View Solar Panels .. 65
Figure 44: Gas Sensor Connector .. 66
Figure 45: Air Quality Table [44] ... 66
Figure 46: Smoke Sensor Schematic ... 67
Figure 47: EPY12241 SMD chip .. 68
Figure 48: Flame Sensor Schematic .. 68
Figure 49: Mechanical Design A .. 69
Figure 50: Mechanical Design B .. 69
Figure 51: Mechanical Design C .. 70
Figure 52: Mechanical Design D .. 70
Figure 53: Final Design (open) ... 71
Figure 54: Final Design (closed) .. 71
Figure 55: Software Design Block Diagram .. 94
Figure 56: Join Request flow diagram .. 95
Figure 57: Fire Packet flow diagram ... 96
Figure 58: Network Control State Diagram ... 98
Figure 59: General software flow when power is applied to the system 100
Figure 60: Raspberry Pi Flow ... 101
Figure 61: Known Connections Diagram – Mesh ... 102
Figure 62: Actions taken on a Message Received event.. 103
Figure 63: Raspberry Pi decision making ... 103
Figure 64: Lost Packets Diagram ... 104
Figure 65: Overview design of color classification plus optical flow 106
Figure 66: Fire Detection Net Architecture .. 107
Figure 67: Current neural network architecture .. 108
Figure 68: Results of Training .. 108
Figure 69: Overview design of computer vision .. 109
Figure 70: Sample results using color classification and optical flow 119
Figure 71: Sample results of contouring ... 119
Figure 72: Controlled fire at the UCF Arboretum [48] ... 128
Figure 73: High Level System View.. 129
Figure 74: Sensors data sent to processor ... 130
Figure 75: 30+ Years of Academic Partnership Between Siemens & UCF to foster the
goals of Siemens Foundation [49] ... 137
Figure 76: Overview of Siemens gas turbines [55] ... 139
Figure 77: Typical gas turbine cycle as stated in [52], the figure shows where a fire and
gas sensor would be needed. ... 140
Figure 78: Thermocouple used in Siemens SGT [54]... 140
Figure 79: Infrared temperature sensor used in the SGT-750 [52]. 141
Figure 80: IoT integration cycle developed by Siemens ... 142
Figure 81: Nacelle of a wind turbine where the AFFS is installed 145
Figure 82: ASA fire detectors by Siemens .. 146
Figure 83:Sinorix fire extinguisher used by Siemens.. 146

Index of Tables

https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%202/Final%20Documentation/SD2%20Paper/SD2%20Final%20Paper%20Fixed.docx#_Toc46703588
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%202/Final%20Documentation/SD2%20Paper/SD2%20Final%20Paper%20Fixed.docx#_Toc46703589
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%202/Final%20Documentation/SD2%20Paper/SD2%20Final%20Paper%20Fixed.docx#_Toc46703589
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%202/Final%20Documentation/SD2%20Paper/SD2%20Final%20Paper%20Fixed.docx#_Toc46703590
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%202/Final%20Documentation/SD2%20Paper/SD2%20Final%20Paper%20Fixed.docx#_Toc46703591
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%202/Final%20Documentation/SD2%20Paper/SD2%20Final%20Paper%20Fixed.docx#_Toc46703592
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%202/Final%20Documentation/SD2%20Paper/SD2%20Final%20Paper%20Fixed.docx#_Toc46703593

vii

Table 1: Project Requirements .. 3

Table 2: Project Constraints .. 3

Table 3: Table of Standards and Regulations ... 5

Table 4: Gas Measurements in the Atmosphere During a Fire [14] 12

Table 5: Comparison Between Technology Ranges and Frequencies 28

Table 6: Comparison of Microcontrollers ... 45

Table 7: Gas Sensors .. 48

Table 8: Smoke Sensors ... 50

Table 9: Flame Sensors .. 51

Table 10: State Transitions ... 99

Table 11: Packet Types ... 105

Table 12: BOM .. 121

Table 13: Division of Labor .. 133

Table 14: Division of Labor Breakdown ... 133

Table 15: Spring 2020 Milestones ... 134

Table 16: Summer 2020 Milestones .. 135

Table 17: Estimated Cost .. 147

1

1. Executive Summary

Fires cause massive environmental damage. This damage can be in the form of physical
damages but also the monetary value of all the structures and items it destroys. Timely
response to a fire is key as the sooner a team can be assembled to fight the fire the less
damage that occurs. The F.I.R.E. system’s goal is to detect fires and send alerts about
the fire across large distances so that response teams can be brought together swiftly.
This allows cities, states, and governments to effectively and efficiently monitor forests
and large expanses of land for fires and alert a location that could be many miles away
from the starting point of the fire. The system uses new wireless technology combined
with machine learning and image processing techniques to determine if there is a fire in
its vicinity and send an alert across the network. Creating a mesh network, the system
will send alerts to all other systems and these notifications will get filtered through the
system to a central location so that the alert can be handled. Using newer wireless
technology LoRa and the power of machine learning, the system will accurately and
efficiently monitor these large areas and assist in preventing the devastation caused by
a fire.

2. Product Description

The following sections cover items relating to the product. The motivation, goals, and
objectives preface everything as the project must fall back on them to complete its goal.
Furthermore, this section covers the Requirements for the system and the “House of
Quality” which helps product development by showing the relationship between customer
requirements and design requirements.

2.1. Motivation

Over 100,000 forest fires have occurred worldwide. In the past, forest fires were
considered a natural cycle and were ignored [1, 2]. However, with increasing awareness
emphasizing the preservation of natural resources, as well as recent forest fires, have put
forest fires at the forefront of global environmental concerns especially due to the fires
Australia in 2001 and 2002 and USA in 2002 [2]. Forest fires not only increase the levels
of carbon dioxide in the atmosphere, but also burn vegetation and plants that act as
nature’s CO2 sinks.

The increased carbon dioxide impacts air quality leading to smog and escalates the rate
of global warming [3, 4]. In addition, humans and endangered animals’ fatalities have
been reported due to forest fires. As a result, forest fire detection and monitoring systems
have sparked the interests of scientists and researchers worldwide.

2

In this paper a prototype forest fire detection and monitoring system is proposed as a
solution. The purpose of this project is to design and build a solar powered forest fire
detection and monitoring system that will serve as a preventive measure for forest fires.
This device would ideally be used in areas where human activity is present such as
campsites especially parts of the forest that are highly susceptible to forest fires. This
device can also be used to monitor and detect forest fires to help researchers and
firefighters determine incoming fires or the severity of the existing fires. Thus, the device
is aimed for prevention and to facilitate extinction of forest fires.

2.2. Goals and Objectives

The main goal for this project is to design a system composed of devices whose main
purpose is detecting and monitoring the environment for forest fires. The devices are
portable so that it can be mounted on trees and can communicate and send data to the
main hub where a forest ranger can monitor forest conditions. Moreover, the system can
be calibrated to work under various forest environments.

Hardware: The hardware of the system includes a solar panel system, power regulation
system, sensors for flame, smoke, and gas detection, antenna and radio frequency
hardware, and processor for network and sensor data.

Software: There are two parts to the software of the system: Network and Fire Detection.
The Network software manages and maintains the mesh network and allows for sending
messages through the network to a “root node”. The Fire Detection software uses sensor
data to determine, through image processing and machine learning, if there is a fire. The
two software sub-systems communicate with each other so a message can be sent
through the network.

Control: To process and control the data, the system includes a low power
microcontroller and a Raspberry Pi that work together to achieve the goals of the system.
The microcontroller handles the wireless communication and joining and maintaining the
mesh network. The Raspberry Pi handles sensor data and determines if there is a need
to send a message across the network.

Communication: A mesh network was created for the project to allow the devices to be
scattered in a forest to communicate dynamically and send data to be processed at the
root node.

Power Supply: The system is powered by solar panels mounted to the top of the tree or
device. Since each device will draw modest current, the solar system is capable of
supplying power and allowing the devices to function autonomously without significant
human intervention.

2.3. Requirements and Specifications

3

Table 1 and Table 2 below show the requirements and constraints as determined by the
project specification. Some ID numbers are maintained from old revisions, therefore some
of the numbers are missing in this table. The requirements and constraints shown here
are that of the final product.

Table 1: Project Requirements

Table 2: Project Constraints

ID Category Requirement

C1 Electrical The system shall use solar power when available instead of
the battery

C2 Mechanical The system shall not be bigger than a bird’s nest.

C3 Mechanical The system shall be mounted to a tree

2.4 House of Quality

The house of quality is a product planning matrix that shows how customer requirements
relate to engineering requirements [5]. The House of Quality is mostly used to identify the
customer’s needs and improving the development engineers’ understanding of the
customer’s intentions. By creating an understanding between the customer and the
engineers who develop the product, the product is designed correctly and efficiently while
maintaining the original “market” requirements that got the project started in the first place.
Figure 1 below is the “House of Quality” for this project.

ID Category Requirement

R1 System The system shall detect the presence of a fire within 100m

R2 Electrical The system shall be able to draw power from a battery or
solar panel at any time

R3 Electrical The system shall charge a battery with solar panel

R4 Electrical The system battery shall last 36 hours without charging

R5 Electrical The system shall communicate wirelessly to nearby nodes

R6 Software The system shall differentiate other nodes and determine
how to send data to the root node

R7 Software The system shall read all sensors periodically and store
data internally

R8 Software The system shall process all sensor data to determine if a
fire has started

R11 Software The system shall store configuration and user defined data
in non-volatile memory

R15 System Average installation time should not exceed 30 minutes

R17 Electrical The system shall verify environment with temperature and
humidity sensors

4

Figure 1: House of Quality

This House of Quality has four major relationships displayed. These four relationships are
the cornerstone to the design. The most obvious relationship is the connection between
the Cost of the product and the cost to design the product. If it costs more money to
design the project, then it will cost more money for a consumer to buy it. The next
relationship is directly between reliability and cost. As the reliability increases, it stands to
reason that the cost will also increase. This may be due to purchasing better materials or
adding in additional components or modules to improve the reliability in the design. The
next relationship that matters greatly to the overall project is the inverse relationship of
battery life and power usage which is directly related to design time. If the time to design
this project is increased, it is likely that we will discover more efficient and better
techniques to save on power consumption. Lower power consumption will increase
battery life. This relationship is important because it shows that with enough time, we can
make a very efficient product. Other relationships exist on the House of Quality, but they
are less “powerful” correlations than the four previously mentioned. During the design and
implementation of the final project special care was given to make sure that too much
time was not spent on different design elements, but the more time spent definitely
improved the reliability and ease of use of the product in the long run.

5

3. Design Constraints and Standards

Design Constraints and Standards are important to every project as they define how this
project relates to the world around it. When a project follows a standard, others can define
how the product behaves or is designed based on what kind of standard is followed.
Furthermore, a product might be approved or denied in certain markets based on which
standards it conforms to. Nonetheless, this section covers the constraints and standards
that this project is designed to.

3.1. Table of Standards

The table below shows standards that could be applicable to the project and what part of
the project would follow those standards. Regulations that could apply (i.e. from the FCC)
will also be listed in this table.

Table 3: Table of Standards and Regulations

Standard or Regulation Application Where it applies

RoHS – Directive
2002/95/EC

Restriction of using hazardous
materials

Entire Project

IEEE C2-2012 Safeguarding persons from
hazards during installation

Entire Project –
Mechanical Housing

IPC-2220 (IPC-2221) Series of standards built around
IPC-2221. Related to PCB design.

Electrical PCBs

IEEE 802.11ah Amendment to IEEE802.11. Wi-Fi
HaLow.

Research
Considerations

47 CFR 18 and 47 CFR
15

Wireless communications and
ISM band

Using the 900MHz
bands for wireless
communications

IEEE 802.15.4 and .5 WPAN and Mesh Networking
standards + Chirp Spread
Spectrum

Research and
Design
Considerations

UL 2054 Safety requirements and tests for
batteries

Batteries

3.2. Other Safety Concerns

6

The following section discusses what kind of safety concerns in the design of the project.
The project uses electricity meaning that there are some important considerations that
must be made.

3.2.1. RoHS

Some materials are hazardous and harmful to the environment. To mitigate effects on the
environment, this project is RoHS compliant to the best of our ability. This means that the
components chosen for the project had no lead, mercury, cadmium, hexavalent
chromium, polybrominated biphenyls, polybrominated diphenyl ethers, and some
phthalates [6].

3.2.2. Battery Safety

Battery monitoring is an important aspect for this project as most battery types available,
due to sizing constraints, are prone to self-ignition which would ultimately defeat the
purpose of this project. The final revision of the project relies on a smart charging IC that
manages the batteries and charges them based on battery health and voltage. The IC
monitors the charge current and battery voltage and controls the charging process
accordingly.

Since Li-Ion batteries are being used in this project it was important to understand their
thermal limitations. Li-Ion has an issue with thermal runaway which is when a battery
reaches a certain temperature and crosses a threshold that will cause the battery to
rapidly rise in temperature. The battery will ultimately fail and catch fire and due to the
chemical makeup of the battery the fire cannot be extinguished easily and normally burns
until the fuel source, the chemicals and metals in the battery, burns out.

3.2.3. Electrical Safety

The system shall take advice from IEEE C2-2012 for Information Technology Safety and
will also follow guidelines of IPC-2220 Generic Standard on Printed Board Design [7, 8].

4. Research and Background Information

The following sections discuss the research into this project idea. The project itself
contains many different technologies and designs independently from each other. To
make sure everything works together, research was completed to understand each part
of the project before going into detail and designing the final system.

4.1. Current Fire Detection Systems

The first step was to look into current fire detection systems. These systems are based
on a variety of technologies. Some of these technologies will be used by us as well but

7

some will be skipped over if they are not pertinent to our design goals. The following
subsections discuss the products used in the industry today or that have been designed
before as well as similar projects using an Arduino. Each of these projects have different
costs and requirements associated. By understanding what sets these systems apart
from each other, good designs can be created that meet our needs.

4.1.1. Products Used in the Industry

Current forest fire detection and monitoring systems use video cameras to recognize
smoke spectrum, thermal cameras to detect heat glow, IR spectrometers, and LIDAR
(detection of light and range) to detect smoke particles using reflected laser [9]. These
systems are costly due to the nature of the technology. Our objective is to design a system
that can accomplish its goal while driving cost down significantly through careful electronic
design and component selection.

The following forest fire detection and monitoring systems exist in the market [9]:

1. AlarmEYE:

a. Video and infrared system using black and white color frequency.
2. EYEfi SPARC:

a. Optical sensors that includes camera, light sensors, communication, weather,
power system, option for tilt zoom camera.

b. Does not include smoke detection
3. UraFire:

a. Smoke detection system focused on “clustering motions and a time input”
4. Forest Fire Finder:

a. Analyzes how atmosphere absorbs light and differentiates absorption behavior
b. Can detect smoke in a range of 15km

5. ForestWatch:
a. Sensor camera mounted on a tower using a using a 360° pan tilt camera that scans

the forest in a range of 16-20km for smoke in the daytime and flame at night.
6. FireWatch:

a. Optical sensor system that scans the forest using a 360° camera with a central
office for monitoring and data processing.

7. FireHawk:
a. Cameras stationed strategically in the forest, the system uses GIS mapping and

ForestWatch software to calculate the shortest distance to the fire.

4.1.2. Similar Project

8

The Arduino fire alarm system using temperature and smoke sensor with Android
connectivity is a product that exits in the market for $5,900 USD and serves a similar
purpose to the final product aimed to design [10].
A major drawback of this kit is the high market value price despite the product using

straightforward components. This price can be attributed to the fire-proof enclosure, which
typically raises the cost of the system. Moreover, the product uses Bluetooth technology
to communicate an alert through a mobile app. Bluetooth technology can range from 30m
to 100m, which could function in an indoor environment but is not ideal for an outdoor
environment that is intended [11]. Moreover, it is not clear if this product will communicate
with other fire systems around it, such as in a mesh network.

However, this product contains many of the features intended to use for this project and
the strategic placement of parts will be useful when designing the printed circuit board for
this project. The temperature sensor, smoke sensor, and microcontroller are components
that would be implemented in this project. Thus, our achieved a similar objective to the
Arduino system; however, most importantly the cost is significantly lower with wider range
and similar fire detection technologies.

4.2. Background Research

After looking at systems that already exist to detect fires, an investigation on other kinds
of technologies that the project will use. Without an understanding of these individual
parts, the system will not function properly. In this section, a narrower view is taken such

Figure 2: Arduino Uno being used in a similar project [10]

9

that individual components, sensors, and protocols are examined for their efficacy in the
project.

4.2.1. Serial Communication Protocols

Serial communication is dependent on the type of microcontroller used and the
communication protocol of the chosen sensors. Based on the research, the likely
protocols to be used for this project will be SPI or I2C.

SPI or Serial Peripheral Interface requires a 4-wire connection: a clock signal (SCLK), a
slave select signal (SSn), Master Out Slave In (MOSI), Master In Slave Out (MISO) [12].
SPI uses a protocol where a single device sends the communication to the slave devices,
thus it uses the single-master communication protocol [12]. In order for communication to
occur, the master and slave must use SCLK frequency, CPOL, and CPHA [12]. In the
event when multiple slaves exist, the master will reconfigure itself each time to initiate the
communication with each slave [12]. SPI does not have a maximum data rate, nor does
it use a specific addressing structure. In addition, SPI does not have a system to
acknowledge that the device received data or options to control the flow of data [12].
Therefore, if SPI is used in command type applications, an additional structure would
need to be incorporated.

The physical interface of SPI is flexible in the sense that many variants currently use a
continuous clock signal and random lengths compared to past types that were non-
continuous clocks and used a single byte scheme.

Figure 3: SPI Topology [12]

10

I2C or Inter-integrated circuit is known for requiring a 2-wire connection between the
peripherals and the microcontroller [12]. The two signals are called serial data (SDA) and
serial clock (SCL) [12]. I2C allows multiple slaves and masters to be connected and
communicate (bi-directionally) between the two lines using a protocol that includes 7-bit
slave addresses and data divided into 8-bit bytes [12]. The bus master is the IC that
initiates the data transfer, while the remaining IC are considered bus slaves [12]. The data
rate should be between 100kb/s, 400kb/s and 3.4 Mb/s for standard mode, fast mode,
and high-speed mode, respectively [12]. There some variants of I2C that include a low
speed mode at 1kb/s and fast mode + at 1Mb/s [12].

Figure 4: I2C Topology

The physical interface of I2C is compose d of SCL and SDA lines as open drain I/Os with
pull-up resistors; while grounded it is a logic zero and while released is a logic one [12].
Due to the physical structure of I2C, communication can occur without conflict even if
multiple two devices are continuously sending information on the SDA and SCL lines;
there is no electrical interruption due to the open-drain and pull-up setup. This is
illustrated in Figure 5 [12].

11

Figure 5: Timing Diagram of I2C [12]

I2C has several advantages over SPI. Firstly, since I2C only uses 2-line connections, this
allows easier implementation since less pins are required. Moreover, I2C allows for
smooth communication with is advance feature of resolving multi-master communication
conflicts on a simple physical structure [12]. I2C’s setbacks in comparison with SPI is with
data rate; SPI is a full-duplex which means simultaneous communication is possible.
Moreover, SPI does not define a speed limit for transmitting data [12].

After examining both protocols, I2C is the ideal communication protocol between the
microcontroller and the sensors; however, SPI is not completely ruled out. The
advantages I2C provides helps achieve the purpose of the project in a straightforward
manner.

4.2.2. Sensors
4.2.2.1. Gas Sensors

When reviewing gas sensor types, the important parameters to consider are sensitivity
and selectivity. Additional parameters to consider are response time, stability,
reversibility, energy consumption, fabrication cost, and adsorptive capacity according to
IEEE fellow researchers investigating fire sensing technologies [13]. Gas sensors detect
gases by observing for variation in the sensor output, which typically is an analog value;
however, some gas sensors send a digital signal out.

12

Table 4: Gas Measurements in the Atmosphere During a Fire [14]

Sensors vary by the material used; existing materials in the market include
semiconductor, catalytic bead, photoionization, infrared, and electrochemical. Additional
gas sensor types include optical, acoustic, gas chromatograph, and calorimetric [13].

In the event of a fire, the air quality changes; the severity depends on the severity of the
fire and the environmental conditions. Forest fires tend to release high levels of N2, O2,

CO, CO2, H2 gasses [13]. Changes in oxygen levels can provide indication of the type of
fire. A low change in concentration suggests a smoldering fire while large changes
suggest liquid fuel fires that rapidly burning fires [13].

Gas sensors made with semiconductor metal oxide are an ideal choice of materials
however they come with disadvantages namely with stability issues that lead to false
alarms [13]. However, despite this issue, zeolites have been used instead of metal oxides
to compensate for this issue [13]. Moreover, gas sensors that use polymers have shown
to enhance sensitivity [13].

Based on spectroscopy laws, gas sensors that use optical methods are more stable,
sensitive, possess better selectivity, and have a low response time [13]. However, optical
gas sensors come with the disadvantage of higher costs [13].

13

A novel method of gas detection uses acoustic waves by detecting the change in velocity
of the wave due to adjusting a parameter of the sensor’s material, for example the mass
[13]. A laser beam is shined through the gas. The gas molecules absorb the beam and
releases the beam’s energy resulting in an acoustic wave which is detected using an
acoustic sensor. The magnitude of the wave is used to identify the concentration of the
gas in the atmosphere. The figure below provides a depiction of how this is achieved.

Figure 6: Acoustic gas detection method [13]

Other methods of gas detection use a combination of sensors to detect temperature and
humidity and an algorithm to detect gases such as CO and CO2 [13]. These gas sensors
use metal oxide or n-LTPS MOS Schottky diode on a glass substrate [13]. SnO2 provides
the highest quality in terms of sensitivity ratio; this was used for gas sensor to detect
gasses emitted during fires by detecting the smells from cotton and the printed circuit
board when it is heated at 200 degree Celsius [13]. This is achieved by measuring the
change in resistance of the parts due to gas emission.

4.2.2.2. Smoke Sensors

Understanding smoke characteristics and causes helps understand how smoke sensors
function in order to choose an appropriate smoke sensor for forest fire applications.
Smoke is produced when a fire is burning and materials are combusted; it is composed
of airborne solid, liquid particulates, and gases, which deems it an unwanted element in
the atmosphere since it reduces the air quality in the environment.

Smoke detection uses two techniques to detect its presence: non-visual and visual [13].
In a non-visual method, the detection technique looks smoke combustion conditions such
as pyrolysis, smoldering, and flaming; these conditions are contingent on the type of fire
and the environmental surrounding [13].

14

Smoke detection methods that use the photoelectric principle are primarily used for
smoldering conditions and is effective in doing so; response times are quick [13]. In this
method, the ionization smoke sensor measures smoke relative to the ionization levels in
the air [13]. A potential difference is applied through a chamber and the output current is
measured as a result [13]. Moreover, photoelectric method dictates that the concentration
of smoke in the air will proportionally increase the light scattering capacity [13]. Thus, this
method measures the variation in light scattered using optical science and technology to
detect the smoke levels in each area. It is also common to combine this method with gas
sensing technology for better results.

Other smoke detectors use alpha particles to the gate of a MOSFET which induces a
positive charge [13]. When the smoke concentrations are high, smoke particles decrease
the number of alpha particles in the gate terminal which then reduces the current [13].
Other photoelectrical methods investigated the range of transmission for wood smoke
using a white polychromatic LED, an optical fiber, pyrex glass window, and photodiodes
[13]. This could be implemented in a forest environment. The figure below provides a
visual of how photoelectrical smoke sensors works.

Figure 7: Visual representation of photoelectric smoke detection [13]

Visual techniques mostly use cameras which can detect both flame and smoke [13]. The
nature of smoke is that it exists at the beginning of the fire which is crucial when designing
fire-detection strategies. Smoke detection uses color space, specifically RGB or YUV.
With RGB, pixel rules must be used; however, with YUV, the rules are dictated by looking
at chrominance and luminance values [13]. To overcome false alarms, luminance
mapping is used paired with support vector machines (SVM) algorithm, and Bayesian
network algorithm. Other techniques to detect smoke use Adaboost with staircase
searching [13].

15

Yet, detecting smoke at the early stage can be difficult when comparing it flame detection;
it is very common for smoke and flame characteristics to be used when creating
algorithms. However, smoke direction can be detected using cameras and various
algorithms.

4.2.2.3. Flame Sensors

In order to understand flame detection to choose a suitable sensor, it is important to
understand the nature and characteristics of a flame. Flame is a visible exothermic
reaction that occurs in a fire due to fuel and oxidants interacting, thus flames emit radiation
and chromatic properties. Flame temperature is dependent on the material that is burning.

There are two methods of flame detection: non-visual and visual flame techniques [13].
Non-visual flame sensors use ultra-violet, visible, and infrared rays [13]. This is because
flames emit a radiation whose intensity is determined by the flame temperature and the
type of fuel burning [13]. An ultra-violet sensor is used to measure the brightness since
UV sensors are not impacted by interreferences from other radiations such as infrared
[13]. Additionally, infrared and visible light sensors are used to measure flame. However,
IR and visible light sensors are more effective than ultra-violet sensors [13]. UV sensors
tend give out more false positive alerts due UV sensors emitting sparks of UV spectra
that essential interferes with the signal [13]. To overcome this effect, a near infrared
photodetector (NIR) can be used for flame detection. NIRs are made of Pb semiconductor
using Colloidal Quantum Dots (CQD) technique [13].

Visual techniques for detecting flame can be difficult because standard heat, smoke
flame, and gas sensors can delay in receiving a response [13]. This is because the
particles must reach the sensors in order for the sensor to trigger a response signal [13].
Moreover, the range of detection tends to have a small radius. As a result, this issue is
typically resolved by installing many sensors to cover a large area [13]. Moreover, the
nature of fires come with various characteristics such as shape, size, color, location,
growth, degree of burning, and dynamic texture and typical sensors are not capable of
measuring each of these characteristics and their parameters accurately [13]. Thus, flame
sensors that depend on these techniques give false alarms whose validity can only be
evaluated by an experienced individual.

A device to solve this issue is using a camera that can capture images of fire and analyze
them accordingly to establish fire detection. Such cameras tend to be very high cost; thus,
it is more common to see surveillance cameras being used instead. IR cameras have
been used for flame detection by using the Markov model to detect flame flicker [13]. The
figure below is a flow chart that explains how this works.

Once a camera records data and provides it in the RAW, RGB, YUV, JPEG formats,
algorithms can be used to examine the images and deduce if the image frame has the
visual characteristics of a fire or not. There are two main methods of designing the
algorithm. The first approach analyzes characteristics such as color, shape, flickering

16

frequency, and dynamic texture of the fire [13]. This requires the use of color spaces;
YCbCr color space showed to be the most effective for flame detection [13]. Other color
spaces that can also been used are RGB, CIE L∗a∗b∗, YUV, or HIS [13].

Figure 8: Hidden Markov model used to detect flame flicker [15]

Color information is not enough to provide accurate results [13]. Movement of fire has
also been examined for fire detection techniques by using background subtraction
method, temporal differencing, and optical flow analysis [13]. The Markov model can be
used to detect flame movement for object that have flame-like colors as well as flame
boundaries using temporal wavelet analysis [13]. Moreover, a moving camera can be
used to observe moving flame pixels without using background subtraction [13]. This can
be paired with detecting color, temporal, and spatial information in each spatiotemporal
area. However, this method can slow the fire-detecting process since the range is weak.

17

Another method utilized the Wald-Wolfwitz algorithm for flame detection looking a
parameter such as color and predictive motion movement [13]. The reliability of the results
was increased using a “convolution operation” [13].

Figure 9: Convolution neural networks approach layers [13]

The second approach of designing the fire detection algorithm utilizes a learning-based
approach [13]. In this method, the system is provided a dataset of fire and non-fire images
and is “trained” to make an appropriate judgement by analyzing for specific fire features.
Convolution neural networks approach is a common approach that achieves this, as well
as You Only Look Once (YOLO), and is discussed later in the paper. The figure below
provides a visual of the layers involved

18

.
Figure 10: Example of the Wald-Wolfwitz randomness test being used for flame detection

4.2.3. Fire Resistant Enclosure Materials

There are a multitude of fire resistive materials to choose from but what was need for this
project is something that is light and offers the most fire resistance possible while not
being excessively expensive. For the purpose of this project the enclosure that will be
used for the prototype will not be fire resistant. This was done to minimize the cost and
manufacturing processes for senior design two. If this project was to be mass produced,
then a fire protective encloser would be utilized to protect the devices in case the fire it
has warned about has climbed up to wherever the device is located.

A few choice materials have been selected for their fire resistive properties and their ease
of implementation into a manufacturing process. The first material is Kevlar; Kevlar is a
synthetic material developed by DuPont and is extremely shock resistant and fire resistant
[16]. It is not very abrasion resistant but that will not be an issue as the Kevlar would be
manufactured into a composite material consisting of a resin and the Kevlar woven cloth.

19

The issue with making an enclosure this way is the fire resistance is now going to be
limited to the resin is used to cast the composite into shape using a mold. The Kevlar
itself has some draw backs, it is very expensive and being a synthetic fiber, it can cause
some medical issues if the individual fibers are inhaled [16].

Figure 11: Synthetic Fiber Kevlar [17]

Another choice material is carbon fiber weave. Carbon itself is very fire resistive and in
its pure form is used for nearly all castings for materials that need to be heated to
extremely high temperatures, temperatures way hotter than a normal wood fire could ever
reach. It has the same drawbacks as Kevlar when it comes to cost and handling of the
raw material. The carbon fiber weave would also need to be made into a composite with
a high temperature resin which would limit the fire resistance to according to the resin is
limited to.

The easiest material for manufacturing would be plastic. Most plastics are not fire
resistant at all. They have many failure modes from melting to ignition. For this project a
plastic compound that does neither is preferred. Luckily, there are plastics that only burn
up and off gas when they do so, but they do not ignite or melt. These plastics could have
additives put in them to increase their fire resistance; an example is any compound that
is a brominated flame retardant (BRF). These compounds burn up in the fire creating a
sort of sublimating coating around the plastic which the fire must get through first to burn
the plastic.

20

Figure 12: Carbon Fiber Weave [18]

4.2.4. Battery Charging and Battery Chemistries

The battery for the project was capable of lasting throughout the night and when the solar
radiation is low on average for the winter months it could handle not being at full capacity
during the day. There are many battery chemistries to choose from with a few types of
batteries not being viable at all for the system. Lead acid and absorbent glass mat car or
RV style batteries could not be used due to sizing and weight. Lighter smaller batteries
were the only batteries available to be used so a NiCad or Li-Ion battery style was used.
For this project, the best option was to go with a battery within budget that was the most
power dense and the chemical makeup of said battery allows for the most charge cycles.

Figure 13: Maximum Charge/Discharge Cycles Versus Battery Type [19]

21

Researching different types of batteries lead to an issue arising between them. The max
depth of discharge had to be accounted for along with how many charge cycles the
batteries could handle. NiCad, or nickel cadmium batteries, were a cheaper option for the
project but the weight and size made them a bad option. Nickel-metal hydride batteries
come at a high price and lithium ion batteries, along with lithium polymer batteries, have
the same level of charge cycles so it made sense to go with which ever one was the
cheaper option. The best option at first seemed to be lithium iron phosphate, or LiFeP4,
but this one is the most expensive out of all the options but did allow for the most charge
cycles out of them all. For a final product it may be a better option to go with this battery
but for the sake of cost, weight, and size Li-Ion batteries were the best option for the
prototyping of this system.

Figure 14: Self-Discharge Rates of Batteries [19]

To further cause issues in choosing a battery for the project the self-discharge rate was
a factor to deal with. Self-discharge is when a battery will slowly lose charge over time
when not in use. Since the solar panels were going to charge the batteries every day the
discharge rate wasn’t a massive impact but the battery that was chosen needed to be
able to handle a day of not being charged and remain in stand by for when the weather
blocks out the sun for a while like in the case of a thunderstorm or hurricane. The only
battery that could be ruled out this way was NiMH as it had the highest self-discharge rate
of all the batteries being looked at.

4.2.4.1. Effect of Temperature on Batteries

For this project, the batteries are going to experience high ambient temperature in the
summertime and most likely very low wintertime temperature due to being placed in
higher locations out in the open. These conditions change how a batteries chemistry
works and will change the overall life and performance of the battery. Wintertime
temperatures shorten the charge life of a battery by slowing down the chemical reaction

22

happening in the cell when power is being drawn from it. When in standby and not being
used cold temperatures will increase the self-discharge rate of the cells which is only
worsened by the fact that wintertime conditions lessen the output of a solar array because
the solar radiation isn’t as condensed as in the summertime. This will cause the overall
max amp to draw to be less as well and could cause total system failure due to over
drawing the battery.

The figure bellow is a graph that highlights what happens to the battery maximum charge
storage capacity if the temperature is increased like in summertime conditions. As shown
the max storage of the battery is not affected until the natural battery charge cycle lifespan
starts to end. The high temperatures only increase the damage done by having a battery
go through many charge cycles with the peak temp of 55C having the most affect it can
be postulated that further increase would cause even more damage but seeing how 55C
is 131F it is unlikely ambient temperatures will exceed this unless the device is currently
engulfed in a fire.

Figure 15: Temperature Vs Charge [20]

The other figure, shown below, is a graph that shows how an increase in temperature on
a battery will lower the max amp output of a battery. RnCw is the current flowing across a
resistor and capacitor in parallel and demonstrates how the battery has an exponential
threshold at 45C and any increase beyond this will drastically decrease the max amp
draw of a battery. This could cause the same issue as the wintertime conditions in where
a total system failure is cause due to pulling to many amps from the batteries.

23

Figure 16: Temperature Vs Time (cycles) [20]

All this means the system needed to be designed to be able to handle the drastic
temperature differences seasonal changes brings which was accounted for by doubling
the power supply system. The number of battery cells was doubled along with the solar
array. This safety factor of two will provide a hefty cushion of protection any temperature
change might cause on the system by having the system draw minimum power in the
most optimal conditions.

4.2.5. Li-Ion for System Power

The final decision to use Li-Ion batteries for this system was made from multiple different
decisions. The major decision that this battery was chosen for this project was cost and
availability. This means that size and configuration for the battery was found and sourced
for the constraints in the project. Many of the students working on this system had the
standard 18650 sized li-ion cell battery to use for any testing of the system so it made the
most sense to go with this battery chemistry for the system.

A few smaller reasons is the way li-ions operate such as how the power output doesn’t
drop as much when the battery is depleted. The chemical make-up of the battery also

24

allows for a minimum for 70 full charge cycles. That means the batteries can be fully
discharged and then recharged to full 70 times before the battery health starts to
deteriorate. This does not prevent the battery from operating anymore it only causes the
battery to discharge faster than when it was new.

4.2.6. Power Supply Topology

The power supply for this system was a solar array that is 12 volts nominally and is
hooked up to a LT3652 solar lithium charging IC that took the 12 volts and regulated it to
the most optimal voltage, 16.6 volts, with a mix current draw of 2 amps. This was then
hooked up to lithium batteries in series. The battery and solar panels are then hooked to
a buck converter that maintained 3.3-volt and 5-volt rails for the Pi and sensors for the
system. This power system was able to utilize the solar cells and battery at the same time
as to not put undue stress on the batteries.

4.2.3.1 Linear vs Switching Regulators

There are two common types of power converters: Linear and Switching. Linear
regulators are the simplest form of regulator as they directly convert power in to power
out. That is, there is no complex operation internal to the regulator. This simple
conversion, however, comes at a price. Linear regulators dissipate a lot of heat when
used and are generally inefficient. As a result, a linear regulator will require a heat sink if
a lot of power is expected to be converted to heat. This will add weight and cost to the
design. Luckily, a linear regulator is generally cheaper and has less components to
support it than a switching regulator. A downside to using linear regulators is that they
must always step-down voltage. There is not a way to step up the voltage through a linear
regulator. Switching regulators provide many different topologies that can, in some cases,
raise the voltage.

It is even possible to design a switching regulator that can lower or raise the input voltage
if it is unstable and is sometimes higher or lower than the desired voltage. This does not
mean that linear regulators do not have their use. Linear regulators are great when there
is a decent amount of power coming in and lower power draw on the other side. An
advantage to using them is when there is a small difference in voltage going in and voltage
coming out. If the desired voltage is just slightly lower than the input voltage, then the
efficiency can be greater than 97%, but only in this case. Usually, it is lower. Considering
our design with batteries: two batteries in series will generate around 8 volts. If we use a
linear regulator to step down to 5 volts or 3.3 volts, there is a significant (greater than a
volt) decrease in voltage. I can be expected, in this case, that the linear regulator will be
much less efficient than a switching regulator. Since our design is purely powered from a
solar panel and a battery, it important to ensure must that the system is efficiently
transferring power between different parts of the circuit and not wasting any power in heat
dissipation.

Switching regulators, on the other hand, are the more likely solution that will be
implemented in the final design. Compared to linear regulators, they are more expensive

25

and require more support circuitry causing them to be a bit more complex than a linear
regulator. The benefit is in efficiency. With a circuit designed properly, the power coming
in can be efficiently converted to the proper power going out. Sometimes even greater
than 99%! Since the system is charging the battery and running the circuit off of the solar
panel, the system will need to efficiently step down the voltage from the panel to the
battery charge voltage, and then from the battery voltage to the circuit voltage. This
means the system will need 2 to 3 switching regulators in our final design. The high
efficiency implies that there is very little heat dissipation. This is good, as our ambient
temperature is going to be higher (or lower in some cases!) than room temperature. The
device is designed to operate outside. In turn, it not ideal to have the device to have too
much effect on the heat around it such that it does not exceed specific component heating
constraints. Since the switching regulator has more components to support it, it will take
up more board space. This is a price that must be paid for the efficiency boost. In the end,
the board space is not critical if designed appropriately. Since our project does not have
any externally imposed sizing constraints, it was possible to move forward with switching
regulators.

4.2.3.2 Buck and Boost Converter

While discussing switching regulators, it is good to have a general idea on how the major
topologies of different switching regulator designs operate. In the design, the system does
not expect to be raising voltages. Therefore, we need to step-down a voltage. This kind
of converter is known as a Buck Converter. They are configured only to step-down DC
voltages. Buck converters store energy in a passive component, usually an inductor, and
uses that stored energy to output a specific value. To store the energy, a pulse width
modulator can be used to charge and discharge the passive component as necessary.
The duty cycle of this pulse determines the voltage that is output since the passive
component must be discharging to provide current. While charging, the passive
component is usually supported by a capacitor on the output end of the regulator. The
passive component is in series with the load, causing a voltage drop due to the impedance
of the device and the time that can charge the passive device. Even though the voltage
is lower, the charging/discharging of the device still keeps the average power equivalent
(or nearly so) while in operation.

In juxtaposition to a Buck Converter, a Boost Converter is designed to increase voltages.
This step-up behavior works in the same way as the Buck Converter: A transistor works
as a switch and at the right switching frequency it charges and discharges a passive
component, usually an inductor. Since current cannot change instantaneously across an
inductor, when the switch is open, the energy stored in the inductor elevates the voltage
level above the input of the storage component to keep power consistent on each leg of
the power network. This action compensates for the lower voltage on the other side at the
cost of lower currents on the high side. The load now sees a higher voltage than the input
source has.

In both designs, heavy filtering may be necessary for sensitive components to avoid
issues with the switching action. This “On-Off” methodology introduces noise into the

26

power system which can be detrimental to digital logic devices (like microcontrollers,
processors, or DSP devices). In many cases, a switching regulator will feature strong
capacitors in the input and output stage to help compensate for the noise and filter it out.

4.2.7. Solar Array Design

Assuming a 12v system that draws an average of 100mA, it was determined that the
needs of the system to be almost 29Wh per day. For five hours of maximum power output
with an MPPT 5.76W is needed, so a 500mA MPPT would be needed. The MPPT would
have to be a custom made one as the ones available for purchase are over specifications
and would not be able to handle the low amount of power flowing through them efficiently.

To make sure the system could handle any solar radiation issues that could arise for a
few reasons such as weather or the panels getting dirty the entire system had a safety
factor of 15% was applied. The needed battery size was doubled to account for
unforeseen issues. Two 1.5 watt panels were chosen and these two panels were wired
in parallel to increase the amperage and to not exceed the 40 volt max of the LT3652 IC.

4.2.7.1. Azimuth and Elevation/Tilt Angle

To properly arrange a solar array to absorb the most solar radiation as possible it needed
to have the proper azimuth and inclination angle for the location it was being used at.
Azimuth is the direction the panels are pointed, measured in degrees with 0 degrees
being south and north being 180 degrees, and inclination is how far a panel is tilted up.
The change is performance of the system if not properly set up is drastic and the location
of the solar panels changes both these parameters which can make it difficult to calculate
the proper setup. If the location is west of the Mississippi river then magnetic declination
needs to be considered for the azimuth angle.

For panels in the Northern hemisphere if the magnetic declination is positive, or east, the
panels need to be rotated eastward at the angle of magnetic declination that accounts for
the change in the Earth’s magnetic field lines. If it is negative, or west, the panels need to
be rotated westward to account for the declination. This must be done because the earth’s
magnetic field is not constant with what true north or true south is. A compass has slight
errors in it due to magnetic declination and must be taken into account when setting up a
panel as all calculations are based off true north.

Setting the tilt of a panel is simple if the panel is to be ridged mounted and not to be
moved. The tilt angle is simply equal to what the latitude is in the location the panels are
being set up. Depending on the location though the panels might need to be tilted plus or
minus a few degrees to optimize them for certain seasons. If the system produces more
power than it consumes in the summer than the system may struggle in the winter and if
this is the case then the tilt should be angled up, plus, about 10 to 15 degrees to account
for low winter production. This will affect the summertime production of the panels but for
this system the summertime solar energy production will be more than what is needed
and the locations in which the system might be placed is expected to have harsh winters.

27

Figure 17: Azimuth and Elevation

A small note on solar tracking systems and their value to this project. While solar tracking
technology does exist and could be designed and manufactured into this system it adds
significant complexity and design, along with weight. Solar tracking systems cost between
$600 to $1000 per panel depending on size and, at best, increase production by about
20%. For our project, the cost and added complexity means that they will not be used.

4.2.8. RF Design and Frequency Selection

To work effectively over a large area, the system needs to wirelessly transmit data.
Different antenna designs and frequencies play a role in designing the circuits and
choosing the components that will work with wireless technologies. This section
investigates the different issues with RF design and some decision-making processes
that took place to choose frequencies and other design elements.

4.2.8.1. RF Considerations

RF and wireless applications require that some specific design rules be followed. If these
rules are not taken into consideration, then significant power and range issues may

28

present themselves. At low power levels, avoiding signal loss is very important. Any piece
of wire can be considered an antenna. How well that wire radiates energy is dependent
on the wire being resonant at the same frequency as the signal applied and that the feed
point of the antenna is matched to the impedance of the attached transmitter. Direction
and range are then determined by the design and shape of the antenna. It is possible that
the radiated energy be aimed at a single point or that it radiates out in a sphere or
doughnut shape.

The antenna must be the correct length at the frequency of operation, and it must have
its impedance matched by the transmitter or receiver to operate correctly. Impedance
matching maximizes the power transfer from the transmitter or receiver to the antenna.

4.2.8.2. Frequency Selection

The main discussion of Radio Frequency technologies comes down to range. Due to its
massive support, the ideal choice is Wi-Fi. Wi-Fi, however, has limited range. The
numbers found in the table below are averages. Actual distances depend on a variety of
variables. The following numbers were compared to get the maximum range out of the
device.

Table 5: Comparison Between Technology Ranges and Frequencies

Technology Frequency Range

Bluetooth 2.45 GHz 30 Feet

Wi-Fi 2.45 GHz (or 5GHz) 100 Feet

Zigbee 2.4 GHz 1000 Feet

FSK Modulation @ 900MHz 900 MHz 2+ Miles

LoRa 400 MHz / 900 MHz 10 Miles

Using the Free-Space Path Loss equation, the attenuation of radio energy between two
antennas is determined.

𝐹𝑆𝑃𝐿 = (
4𝜋𝑑𝑓

𝑐
)

2

where d is the distance between antennas, f is the frequency, and c is the speed of light.

A graph that shows the best option for longer ranges and frequencies to minimize
attenuation is generated by trying different frequencies and ranges.

Finally, due to regulations of how much power can be dissipated in the 400MHz bands,
900MHz is a good solution for global use and higher power dissipation.

29

Figure 18: Signal Attenuation Vs Distance of Different Frequencies

4.2.8.3. Antenna Design
Antenna design plays a big role in RF applications. Without a proper antenna design the
range and sensitivity of the device will be severely impacted. This section outlines some
research in antenna design and considerations.

Whip Antennas
These kinds of antennas are designed for machine-to-machine communication but are
not used in portable designs much anymore.[45] They are externally mounted, so they do
not suffer interference issues from a PCB as much as other designs and they are not
easy to detune. They are very useful for certain applications that could benefit from an
external antenna.

Helical Antennas
These kinds of antennas are similar to whip antennas but instead of being a strand of
wire externally mounted, they are copper that’s wound in a helix shape. Since the
frequency band is selected by the length of the antenna (among other factors), the
antenna can take up less space since more of the copper takes up less area being wound
in a loop. Due to their size and mounting style, they are fairly rugged [21] which means
they can be put inside the mechanical housing of the device and can be hidden from view.

Chip Antennas
Chip antennas (Usually made from ceramic) are small and easy to put into a design. They
have several advantages compared to larger antennas. They are not as sensitive to
proximity interference and from other components. Furthermore, they are easier to

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

A
tt

en
u

at
io

n
 (

d
B

)

km

Signal Attenuation vs
Distance of Different Frequencies

400MHz

900MHz

2.4GHz

5GHz

30

accommodate without simulation [22]. A downside as these are more expensive than a
trace PCB but they are generally cheaper than other alternatives.

Trace Antennas
Trace antennas seem to be the cheapest but most difficult antenna to design. They are
included in the cost of manufacturing the PCB. This means that, if designed correctly, the
antenna is free! Furthermore, they are more tamper proof since it is embedded into the
PCB. When tuned correctly they can operate in a wide bandwidth and have a good
amount of network reliability [22]. A downside to these kinds of antennas are that they
cannot be modified after manufacturing. Any changes to the antenna require redoing the
board layout and having new boards manufactured again.

4.2.9. Machine Learning/ Computer Vision

This section will cover different methods/models that was considered to use for detecting
fire using our system. These will cover different filters and adjustments that can be done
to the images to help the system learn and identify the fire in an image or sequence of
images. There are multiple ways to help the system identify the fire. It could be using
deep learning through available pre-trained models or having functions such as optical
flow or color classification to help identify the area of the fire.

Our system will be able to ignore the background and its noises and identify the fire that
is within an image or a sequence of images with minimal processing power via Raspberry
Pi inspired by these methods/models.

4.2.9.1. Generic Object Detectors

There are several accessible neural networks such as YOLO and Faster RCNN via
GitHub. Other neural networks were discovered that focuses on detecting fire instead of
having functions such as object classifier. This subsection covers the comparison
between them.

4.2.9.1.1. YOLOv3

YOLO (You Only Look Once) is one of the popular object detection methods. In fact, it is
a state-of-art, real-time object detection system. It is a fully convolutional neural network
(FCN) and has no pooling used [23]. By having no pooling, it avoids loss of minor features.
It has great speed and accuracy compared to other state-of-art methods as seen in the
figure 51 below which is the reason behind its popularity. For these reasons, YOLO is
one of the top methods that come into our minds to implement in our system [23]. Thanks
to its popularity, there are many tutorials as well as resources and forums available for
this model which can help us understand and use it better.

31

Figure 19: Comparison of other state-of-art models on the COCO dataset [23]

YOLO predicts and outputs feature map that has box coordinates, object score, and class
scores as shown in the figure below. This means that it can classify and detect object at
the same time. Since YOLO is a fully convolutional network, it can adapt to different sizes
of images. However, it is recommended to have a constant input size to avoid adding
complexity and issues during implementation. Since its accuracy and speed is applicable
for real-time detection, this model is one of our top choices to implement. The reason
behind the speed of YOLO compared to Faster RCNN is its use of confidence score to
eliminate many of the predicted bounding boxes per object.

32

Figure 20: YOLO Bounding Boxes [24]

For an image of size 416x416, YOLO predicts 10647 bounding boxes. To reduce these
boxes in order to detect a dog in the picture as shown in the figure above, it uses
thresholding by object confidence score and non-maximum suppression as shown in the
figure above.

YOLO offers great information such as bounding boxes for the detection of objects. It
even classifies the detected objects from one another. However, most of these features
are not needed for the purpose of our system. Our system focuses on binary classification
of whether the flame exists in the image or not. There is a great possibility to utilize YOLO
(or TinyYOLO) in Raspberry Pi Zero, but this required many adjustments. Through our

33

experiments, implementing YOLO is difficult and tricky due to the limitation of the
Raspberry Pi Zero.

4.2.9.1.2. MobileNetV2

The main concern lies in whether our embedded system can handle all the computations
and processing fast enough to detect the fire. Thus, other models were investigated that
are commonly used in a similar set up as our system.

One of the models found that is commonly used with Raspberry Pi is MobileNet. This is
another model that is accessible and most optimal for our hardware, Raspberry Pi Zero.
MobileNets are low-latency, low-power models for mobile applications to perform object
detection, classification, and segmentations. There are MobileNetV2 and MobileNetV3
available through GitHub [25]. These can also be used for real-time object detection and
can be easily implemented by Raspberry Pis. Many examples are available online.

Figure 21: Comparison between MobileNetV2 and MobileNetV3 [26]

As seen in the figure above, MobileNetV3 has better accuracy compared to MobileNetV2.
However, the MobileNetV3 being new makes the MobileNetV2 preferable to use when it
comes to training the models ourselves because of the details that could be found about
the hyperparameters of MobileNetV2 in the GitHub and not of MobileNetV3.

4.2.9.2. Neural Network Frameworks/ Services

Different frameworks exist to help with the implementation of neural networks. When
designing software around a neural network framework, it is important to discover the
differences in each framework. The strengths and weaknesses of each framework will
determine which framework is used for the project and how well it performs. The best
framework, which most optimal for the capacity of the Raspberry Pi Zero, was taken into
consideration.

34

4.2.9.2.1. Keras

Keras is a high-level neural networks API, written in python. [27] It allows easy prototyping
of a model and runs on both CPU and GPU. It is easy to use and beginner-friendly, but it
does not allow many modifications to the model like Pytorch does. There are simple
examples available online to test and create your own neural network architecture quickly.
There are some models such as Faster RCNN that are coded using Keras. Keras can
also accommodate to Raspberry Pi which makes Keras one of our top frameworks to
utilize.

4.2.9.2.2. PyTorch

PyTorch is an open source machine learning framework that excels in researching
prototyping and production. [28] Pytorch is known to be harder to implement than Keras,
but it provides more flexibility and features. Most of the models available publicly are
coded using PyTorch as it is one of the top used frameworks when it comes to machine
learning researches as it offers fast and dynamic training.
Many industries also look for proficiency in this framework as they also use this as their
main framework. Understanding and being able to use PyTorch should be useful for us
in long term and a good skill to have. Knowing how to use this framework should indicate
a good understanding of machine learning.

4.2.9.2.3. TensorFlow/TensorFlow Lite

TensorFlow/ TensorFlow Lite is an open source deep learning framework for on-device
inference. [29] It is commonly used with the Raspberry Pi Zero. To implement deep
learning, we would need to install this to the system. Most of the tutorials we encountered
use this framework especially for Raspberry Pi. It is also most optimal for integrating AI
into a product.

4.2.9.2.4. OpenCV

OpenCV is an open source computer vision library [30] that has many computer vision
applications. OpenCV is the best choice among the others we mentioned when utilizing
CPU. This is because it has many libraries and models that are optimized for CPU use.
The models mentioned earlier can be implemented using OpenCV using their pre-trained
models. OpenCV has many libraries available for us to use and is popular enough to have
many resources to help us guide through the process.

4.2.9.2.5. Google Colab

To train the model, we need to perform it outside of Raspberry Pi Zero as it takes too
much processing power. Google Colab allows usage of GPU for faster training and has
many necessary packages installed already. It is user friendly and has easy access to
Google Drive which makes retrieving dataset easier if it is saved there.

35

4.2.9.3. Frame Differencing

Frame differencing is where we simply take a difference of values between the two

images to see where the movement is significant. This is a way of capturing the temporal

information between the images. Since flames will flicker and spread, it should have much

more movements compared to the background. Thus, we expect the frame differencing

to be effective in identifying the flame. One of the main concerns for using frame

differencing is distinguishing the flames from other movements such as leaves swaying

or movements of animals in the forest. These can be solved by eliminating background

noises and noticing a big difference if an animal is detected. Applying additional filters

such as blurring, or normalizing will help the model detect the fire from those subtracted

images.

An example of frame differencing can be seen in the figure below. The white values
indicate high differences or movements between the frames. In the example, it is
noticeable that the movement was significantly recorded for the human and the flame.

Figure 22: Frame Differencing [31]

There are other researches done on computer vision with fire detection using frame
differencing. The method by the Ministry of Public Security of Shenyang Fire Research
Institute shows how the smoke is also being detected via frame differencing as seen in
the figure below. This is an interesting concept as we initially disregarded the idea of
smoke being detected in our system. However, it is one of great indicators of forest fires
and identifying smoke in our system can warn or notice fire in great distance.

An example of frame differencing from the Ministry of Public Security of Shenyang Fire
Research Institute is shown in the figure below. It shows both cases where the smoke is
detected, and the flame is also detected by itself through the help of frame differencing.
As seen in the figure, the smoke can be large and seem to be easily recognizable. This
may mean that the smoke detection may possibly be added to our system. Furthermore,
these examples show how effectively can frame differencing isolate desired subjects of
fire and smoke in order to alert the system. This is because the fire and smoke have
distinct movements compared to the other movements in the background. They also have
patterns that can be recognized using frame differencing which also helps distinguishing
them.

36

Figure 23: Frame differencing continued [32]

Frame differencing can greatly help in distinguishing the background from the flame and
smoke by capturing the flickering movements as seen in the previous examples. Being
able to detect smoke is an additional feature that may significantly improve the system’s
effectiveness and utility. For instance, even if small flame was missed, the smoke can
trigger the system earlier rather than waiting for the flame to be large enough to be
recognizable.

4.2.9.4. Color Classification

Color classification is a method to classify area of an image by its color values. It can
distinguish different color values, hues, and saturation. It is a simple yet effective method
to add into a system. Since our focus is forest fires, the fires should have significantly
different color from the other objects in the background. Thus, we expect the system to
be able to provide better results by applying color classification as part of its identification
process. Adding color classification should further help in narrowing the computation time
as well as increased accuracy by providing better predictions of where the fire may be.

Compared to frame differencing, color classification may run into more ambiguous
detections, since forest contains many objects that can be detected as false positives

37

such as red flowers, woods, and leaves. To avoid confusion between different objects,
focusing on specific unique color that is most applicable to flames should increase
accuracy. However, choosing a specific value of color to detect fire as a threshold is tricky
as it increases false alarm rate or lower overall accuracy.

But the application of color classification to a system is much easier compared to frame
differencing. OpenCV’s functions help ease the application of color classification or
dissect images into the RGB layers and focus on the R layer alone to help the model
detect the fire. OpenCV is also a reliable library that provides color classification and
shape detector. It also has a packages for Raspberry Pi. The figure below shows an
example of color classification and shape detector using OpenCV libraries alone. It
computes the center of the contour, perform shape detection and identification, and color
labeling by taking averages of a particular image region.

Figure 24: Color Classification and finding contours using OpenCV [30]

There are other researches that also implemented color classification in order to detect
fire. Figure 25 is an example of a research that utilized the color classification in order to
detect the fire. As you can see in the example, flame is within the predicted area using
the color classification. However, other objects such as wood or person are also detected
as false positives. In the research, they were able to minimize these false positives by
adding motion along with the color classification to narrow the predictions down.

Color classification may greatly be enhanced by adding other methods such as frame
differencing to minimize false positives by isolating objects that have motion and desired
color value. By doing so, leaves, trees, and structures may easily be distinguished from
the fire as it will not have as much of flickering movements as the flames will have. By
eliminating most of it, it should significantly help our system to learn or identify the flames
from others.

38

(a) (b)

(c)

Figure 25: Color of Fire Classification [31]

(a) original image (b) red denotes pixels that were classified as being the color of fire (c) color classification with motion

Since we are aiming to detect fire in a forest setting, these flames will be very
distinguishable compared to the other objects in terms of color. Adjusting different settings
such as saturation and filters may also help in identifying the fire and distinguish it from
the rest of the background.

4.2.9.5. Optical Flow

Another method to detect motion is optical flow. This method can be implemented using
OpenCV [33]. Optical flow shows the vector or density of an object’s movement between
two consecutive frames. The dense optical flow in OpenCV uses Gunner Farneback’s
algorithm. In this method, the direction corresponds to hue value while the magnitude
corresponds to the value plane. An example output can be seen in the figure below.

39

Figure 26: Dense Optical Flow [33]

Top image in the figure above is the original image while the bottom image shows the
result of dense optical flow via OpenCV. Optical flow is another method to detect motion
like frame differencing. Optical flow adds a bit more complication than the frame
differencing, but the available OpenCV library helps us implement this method with ease
much like color classification.

By taking in consideration that the flames flicker in concentrated area spread slowly,
optical flow can best illustrate this dense movement in the sequence of images and
identify flame. This is an easier implementation than frame differencing as we do not need
to experiment our own filters and thresholding as much as frame differencing would need.

Optical flow also helps us distinguish other movements such as animals moving by
comparing the density and the vector of the movement. OpenCV optical flow is able to
ignore the background noises which can help reduce false positives. Thus, this method
is very effective in detection motion while identifying its density and vector.

4.2.9.6. Superpixel Localization

Another method we found interesting and effective is superpixel localization. Instead of
looking at the whole image, pixel by pixel, or by looking at bounding boxes, it localizes
objects by segmenting the image into perceptually meaningful regions similar in texture
and color.

40

A research from Durham University [34] shows how they were able to effectively detect
fire using superpixel localization and a network architecture with reduced complexity. By
using superpixel, they were able to increase accuracy without adding complexity to the
network architecture and with no temporal information. Their research shows that using
superpixel significantly outperformed other works in the non-temporal fire detection.

Figure 27: Superpixel Localization from Durham University [34]

This method is also available in GitHub created by Toby Breckon [35]. He uses FireNet
and InceptionV1-OnFireNet architecture shown in the figures below along with the
superpixel localization explained in the research. These netowrks have binary detection
architectures that determine whether an image frame contains fire globally. However, by
adding superpixel localization, it breaks down the frame into segments and performs
classification on each superpixel segment to provide in-frame localization. The superpixel
localization uses SLIC algorithm. For the best performance and throughtput, use the
FireNet model.

Figure 28: FireNet Architecture [35]

If slightly lower false alarm rate is desired despite having lower throughtput, then use the
InceptionV1-OnFire model shown in the figure below.

41

Figure 29: InceptionV1-OnFireNet Architecture [35]

An example output is shown in the figure below. As seen in the figrue, it was able to
successfully identify the fire in the given image by selecting the correct superpixel regions
associated to the fire.

Figure 30: Implementation of Superpixel Localization with CNN [35]

Left Image: Original image, Middle Image: Superpixel Localization, Right Image: Predicted Fire Regions (Green)

These models are available in pre-trained form using the dataset found in the Durham
Collections. Both models were able to achieve over 90% accuracy using that dataset
according to the Durham University’s research paper.

The superpixel localization can be applied by using the OpenCV as it provides three
different algorithms we can choose from to perform superpixel. They are SLIC, SLICO,
and MSLIC as shown in the figure below. [30]

42

Figure 31: Superpixel Localization using OpenCV

4.2.9.7. Original CNN (Convolutional Neural Network) Design

There are other available models or neural networks out there but not much that are
publicly available for us to implement especially with the Raspberry Pi Zero. To solve this
problem, we can create our own CNN architecture. However, this means finding a novel
way in such a short amount of time with limited resources such as accessible GPU and
datasets. This route seems very impractical for our project considering there are already
readily available CNN that may fit fine with our goals.

Combining all these methods’ advantages, we may be able to create something novel
and much more effective system than what is out there. For example, combining faster
RCNN and YOLO may result in better model. Utilizing color classification and frame
differencing will also help in creating better accuracy for the model [10]. Or optical flow
with one of the generic object detectors may work fine as well. Another design we may
add to our model is changing its hyperparameters to optimize for detecting fires.
Reduction of latency is also possible by eliminating unnecessary features that come with
the pre-trained models and libraries such as classification and segmentation.

However, due to time constraint, testing all the methods mentioned above is not possible
as it will take time to design, program, train, and test the model. Tweaking the
hyperparameters alone would be tedious and take tremendous amount of time to find the
best values for the models to perform. In addition, it does not provide much scalability
and promising improvement.

Another option to ease the heavy computation usually brought from the models is to
create a much simpler CNN architecture concentrating on binary classification and just
identifying whether the fire exists or not. This model can be improved by adding the other
methods mentioned such as color classification or motion detector to eliminate false
positives in the early stage.

4.2.9.8. Settings for Machine Learning

43

4.2.9.8.1. Programing Languages

Python is used for our programming language to utilize machine learning. Many resources
use Python as well which makes it easier and efficient for us to use. Python is also easy
to learn and ideal for people who wants to learn a new programming language. Thus,
making it easy to follow or understand the code by itself too.

4.2.9.8.2. Hardware

We chose Raspberry Pi Zero to implement computer vision in our system. It has low cost
while providing decent amount of memory and speed for our system. Another system we
were considering was Raspberry Pi3. It was widely used and had several tutorials
available online to implement computer vision. However, it had much higher cost
compared to raspberry Zero. Furthermore, our system does not require the output to be
instantaneous. Our priority for our system’s goal is for it to be able to detect fire fast
enough to relay the message to the other systems. Thus, it was decided that the
Raspberry Pi Zero should sufficiently perform and meet our goals while saving us
significant cost.

4.2.9.9. Dataset

For our model to have a good performance, it is optimal for us to train our models instead
of utilizing the pre-trained models available online. However, this requires us to create
our own dataset to train and test our models. Usually, a dataset would contain thousands
of images for the model to learn from. The number of images can be increased improve
its performance if adjusting its hyperparameters seems ineffective. Another possible
source of a dataset would be utilizing similar dataset other research mentioned earlier
has used.

4.2.9.10. Summary and Update

Utilizing Raspberry Pi Zero caused unexpected obstacles during our development of the
software for machine learning. It has limited access to many packages that TensorFlow
offered. The processing is too slow to install many of the packages that are needed to
implement most of the pre-trained models available online such as YOLO. Furthermore,
Raspberry Pi Zero is not optimal for real-time object detection due to its limited memory
and processing power. It cannot handle complicated neural network structures with many
parameters. Thus, simple convolutional neural network is best used for this set up unlike
YOLO. There are many complications just to install the right packages for Raspberry Pi
Zero. However, OpenCV can be successfully installed and it had enough processing
power to run a pre-trained model for one or two images (sacrificing some processing
time).

As mentioned earlier, Raspberry Pi Zero cannot handle much processing and kept
running into issues with necessary packages. Therefore, the generic object detectors
mentioned earlier were not successfully implemented. To handle this issue, resources

44

designed specifically for Raspberry Pi were tackled first. Upon searching for more, Fire
Detection Net [36] were discovered which has simpler neural network architecture
compared to the generic object detectors and other fire detection computer vision
research to accommodate for Raspberry Pi capabilities. From there, we ended up
adjusting the layers and hyperparameters to achieve acceptable performance. The
designs and architectures of the neural network is discussed later in the section 5.4.2.
This was time consuming and did not allow us to further implement the other networks.

Keras, TensorFlow, and OpenCV are sufficient and can be operated in Raspberry Pi Zero
for application of computer vision to the system. Although not all the versions worked well
with it. Keras 2.1.5 and TensorFlow 1.8.0 were the only ones that properly worked during
our development. This was easier to install via Python 2.7 version. Different versions
would have issues with installing or managing the code. The whole process for the
TensorFlow and model to load would take few minutes. However, the Raspberry Pi is not
capable of training the model. Therefore, Google Colab is used to train and test the model
before implementing into the Raspberry Pi. Google Colab can be either Python 2.7 or 3
as long as the model is trained with the same version of Keras and TensorFlow.
Otherwise, there will be problems in loading the model in Raspberry Pi.

The color classification went smoothly as researched beforehand. However, to detect
motion, dense optical flow was utilized instead of the frame differencing. This is mainly
due to the time constraint. Optical flow is much easier and efficient to use compared to
frame differencing. Through testing, it showed it can detect motion accurately. In contrast,
frame differencing requires more refining after subtracting the images without the
assurance of improvements. The same reasoning applies to superpixel localization.
There was not enough time to test without guarantee of improvements.

For the dataset, there was an easier way to create an original dataset consisting of few
hundred images by using the Microsoft API which is explained more in 5.4.2.1.

4.3. Component Research

An even narrower view than before is the selection of individual components. In the
following subsections, different components are compared to see if they make a good fit
for the system. These components, and their selection, will take parts of the previous,
higher level, sections and focus on individual aspects that set the components apart from
the others and lend themselves to a good design.

4.3.1. Controller Selection

The fire detection system operates in two parts: Process the sensor data and process the
network data. Since these devices are wireless and need to be put out over a wide area,
controllers that can support wireless communication and also process the sensor data

45

are needed. Some options, initially investigated, were the MSP430 family, ATMega
family, and Espressif ESP32 controllers as they are popular options for controllers and
have a wide variety of resources. As discussed in the previous section about Radio
Frequency communication Technologies, LoRa modulation was chosen as the physical
layer for communication. Because of this, the MSP430 and ATMega microcontrollers fell
out of favor since they do not inherently handle RF communications. They would have to
be interfaced with another circuit to implement the RF design and that would increase
cost and complexity. To remove this complexity, the SAMR35 was chosen. It contains a
LoRa and FSK modulator/demodulator built into the chip. Combined with its low power
usage and high RAM options, it is a good choice.

Note: All values are shown at their highest possible offering if multiple values are given.
Table 6: Comparison of Microcontrollers

Controller RAM Flash Avg Power (mA)
(Tx/Rx/Run/Sleep)

Sleep
mode

Wireless

MSP430 66KB 512KB -/-/2.36/.00045 Yes No

ATMEGA4808 48KB 6KB -/-/11/.0001 Yes No

ESP32 520KB 4-
16MB

240/100/30/.005 Yes Yes

SAMR3x 32KB 256KB 95/16/4.5/.0008 Yes Yes

Finally, the matter of sensor reading, machine learning, and image processing was
discussed. To handle this simply and quickly, the Raspberry Pi Zero was chosen since it
can run Python code (making the software easier to write and maintain) and it has a
relatively low power consumption: about 100mA.

4.3.2. Radio Frequency Communication Technology

Since the 900MHz band was chosen as our frequency of choice, there are only a few
simple to integrate solutions on the market. IEEE 802.11ah would be ideal, however it is
not quite ready for the industry just yet.

This leaves only a few viable options like XBee and LoRa.

LoRa appears as the best modulation technique as it is simple, has some examples, and
has some resources to pull from. Furthermore, the SAMR35 microcontroller already has
the LoRa modulation scheme built into the chip. Therefore, LoRa was chosen as the
modulation technique. Finishing out the project, however, showed that the LoRa
implementations shown online used external transceiver ICs (like the SX127x series
chips) or were made for LoRaWAN. This is different than LoRa as it is a MAC layer built
on top of LoRa. This made for some interesting challenges as discussed later in the paper.

46

LoRa is still a good choice and so more time would have been needed to complete the
project as intended.

4.3.3. Fire Detection Sensors

The solution chosen to tackle to the environmental issue of forest fires has been narrowed
down to sensor detection based on past research and implementation and understanding
of forest fire behavior. The devices detect fire using three main approaches: flame
detection, gas detection, and smoke detection.

Figure 32: Hydrogen sensor mounted to a tree during an experiment done in Humboldt University in Berlin,
Germany. [9]

This approach provides an efficient method of detecting frame light in the nighttime, by
identifying infrared radiation, but also during the day by sensing specific gasses, smoke
particles, and beams of bright light (flame) [37]. Flame sensors observe the wavelength
of a burning flame using infrared sensors as transducers. Gas sensors are designed to
detect the concentration of specific gases in the atmosphere also using infrared sensors.
When the concentrations reach the sensor’s maximum reading, an alarm is triggered. The
common gasses released during a fire emission include carbon monoxide, carbon
dioxide, hydrogen, nitrogen dioxide, sulfur dioxide, and volatile organic compounds [14].
Smoke detectors work by emitting alpha particles to the atmosphere. When smoke is
present, the ionized air molecules interact with the smoke. Other smoke detectors
function by emitting light to its surrounding; the presence of smoke will cause light
shattering which sends the signal of a smoke alarm [14].

47

Camera surveillance is also another technique that has been used by other systems. In
this case a video camera system is set up in the forest and used to recognize a spectrum
of smoke and fire during the day and night [3]. Other techniques use thermal cameras to
detect heat and glow of a fire. Moreover, Infrared spectrometers have been used to
observe specific visual characteristics of smoke. Lastly, LIDAR (light detection and
ranging) have been used to measure reflected rays from smoke particles [3]. Cameras
provide a range of opportunities however there are challenges associated with using
them; cameras record images with a number of pixels and observes the motion between
the images to compare pixels to the characteristics seen in a fire. This comparison is done
through an algorithm [3]. Such optical systems are usually integrated with local maps.

Figure 33: FireWatch adopts a similar concept to our method of scattering sensors in a forest, except their system
uses cameras [3]

An additional advantage to our approach is the use of wireless sensor networks. A
wireless sensor network is a cluster of “low- cost battery-powered sensor nodes” that
uses wireless communication [38]. A wireless sensor network mainly includes numerous
sensor devices that typically use low power, low processing memory, and low bandwidths
[39] Within this network will be a wireless mesh network, which is defined as a “multi-hop
wireless network formed by a number of stationary wireless mesh routers” [38, 39]. By
creating a network of sensors that communicate with each other and send updates to the
central hub, we are able to identify localized and sweeping fires occurring in a forest. Long
Range Wireless Data Telemetry, which uses bi-directional VHF / UHF radio frequencies,
has been studied and suggested to connect multi-node fire sensors and GPS to create a
fire detection prototype with promising results due to its wide range [40].

4.3.3.1. Sensor components.

Based on the research, the following components were considered as sensors to be used
in the system based on electrical characteristics (supply voltage), cost, I2C compatibility,

48

and principle of detection. Each sensor listed provides an advantage considerable
enough to be worth exploring.

Table 7: Gas Sensors

Gas
Sensor
Name

Op.
temp.

Comm.
protoco
l/
Output
type

Op.
Volta
ge

Cost Notes

Renesas
Electronics
America
Inc. e
ZMOD4510
Gas
Sensor
Platform
Smoke
Sensors

-40 ~
+65 C

I2C
interface
Up to
400kHz

1.7V –
3.6V

5 for
$56.
13

Displays air quality index

(NOx) and ozone (O3) (20 –
500ppb).

AMU gas
sensor

-5°C ~
+
50°C

Analog
output
with
Analog
to Digital
Convert
or

1.4V 5 for
$40

CO2 (eCO2) range from 400ppm up
to 29206ppm.

eTVOC range for CCS811 is from
0ppb up to 32768ppb.

Senseair
CO2
sensor

0 –
50°C

UART,
Modbus
protocol

4.5-
5.25V

5 for
$211
.05

Non-dispersive infrared (NDIR)
principle. Signals alarm output.

CO2 400–2000ppm. Can go up to
10,000ppm in extended range

AS-MLV-P2
Air Quality
Sensor

up to
300°C

Analog
output,
requires
ADC

3V 5 for
$84

Sensitive to humidity changes and
temperature changes.

CO, butane, methane, ethanol,
hydrogen from 0 to 6000 ppm

Multi-gas,
humidity
and
temperatur
e sensor
combo
module

5 -
55°C

Digital
I2C
interface

5V 10
for
$20

Measures indoor air quality
parameters total VOC (tVOC), CO2-
equivalent (CO2eq), relative
humidity RH and temperature.
a typical accuracy of ±5 %RH and
±1°C.

Gasses: 0 – 60000ppm
Humidity: 0 to 100 %RH

49

Temperature: –20 to 85 °C

Sparkfun
Gas
Sensors

5 -
55°C

Resistor
to
Analog
to Digital
conversi
on
needed.

5V 7 for
$30

Alcohol, LPG, Methane, Carbon
Monoxide, Hydrogen.

Gas concentrations 200 to
10000ppm.

Gravity:
Analog
Gas
Sensor
(MQ2)

20℃-

50℃

Analog
output

 $6.9
for 1.

Application gas leakage detecting
equipment in family and industry,
are suitable for detecting of LPG, i-
butane, propane, methane, alcohol,
hydrogen, smoke.

Renesas
Gas
Sensor
Module for
TVOC and
Indoor Air
Quality

Up to
300 ℃

I2C 10
for
$83

Detecting total volatile organic
compounds (TVOC) and monitoring
indoor air quality (IAQ) in different
use cases.

Measurement range: 200ppm-
5000ppm LPG and propane
300ppm-5000ppm butane
5000ppm-20000ppm methane
300ppm-5000ppm H2 100ppm-
2000ppm Alcohol

Adafruit
MiCS5524
CO,
Alcohol
and VOC
Gas
Sensor
Breakout

Up to
80℃

Output is
a
resistan
ce,
analog
voltage
proportio
nal to
gasses
detected

5 V 1 for
$20.

Output does not identify gas
detected.

CO (~ 1 to 1000 ppm), Ammonia (~
1 to 500 ppm), Ethanol (~ 10 to 500
ppm), H2 (~ 1 - 1000 ppm), and
Methane/Propane/Iso-Butane (~
1,000++ ppm)

Adafruit
BME680 -
Temperatu
re,
Humidity,
Pressure
and Gas
Sensor

Up to
80℃

SPI or
I2C

 1 for
$22.

Temperature, humidity, barometric
pressure, and VOC gas. Must be
calibrated. Detect gasses &
alcohols such as Ethanol, Alcohol
and Carbon.
Must be calibrated

Humidity with ±3% accuracy,
barometric pressure with ±1 hPa
absolute accuracy, and temperature
with ±1.0°C accuracy.

50

Selected sensor:
In the end, the Adafruit BME680 was chosen since it is a 4 in 1 sensor that provides
temperature, humidity, pressure, and gas measurements. It used an I2C protocol and
requires a supply voltage of 3.3V to 5V. The sensor also had an IIR filter that is used for
temperature compensation and to provide accurate measurements for gas, temperature,
humidity, and pressure. The cost of the sensor also falls within a reasonable range.

Table 8: Smoke Sensors

Sensor Op.
temp.

Op.
Voltage

Output Cost Notes

CMOS
Photoelectric
Smoke
Detector
ASIC with
Interconnect

-25°C
to
75°C

12V Output
local
alarm

25 for
$17

An internal oscillator strobes
power to the smoke detection
circuitry for 100us every 8.1
seconds to keep standby
current to a minimum.

If smoke is sensed the
detection rate is increased to
verify an alarm condition. A
high gain mode is available for
push button chamber testing.

CMOS
Ionization
Smoke
Detector
ASIC with
R&E
International
Interconnect
and Timer
Mode

-10 to
60°C

15V Output:
local
alarm

25 for
$16.50

The smoke comparator
compares the ionization
chamber voltage to a voltage
derived from a resistor divider
across VDD.

This divider voltage is available
externally on pin 13 (VSEN).
When smoke is detected this
voltage is internally increased
by 130mV nominal to provide
hysteresis and make the
detector less sensitive to false
triggering.

CMOS Low
Voltage
Photoelectric
Smoke
Detector
ASIC with
Interconnect

-10 to
+60°C

5V Output
signal:
local
alarm

25 for
$27.25

The RE46C190 is a low power,
low voltage CMOS
photoelectric type smoke
detector IC. With minimal
external components, this
circuit will provide all the
required features for a

51

and Timer
Mode

photoelectric-type smoke
detector

PIM-438
Smoker
sensor (and
oximeter)

-45 to
80°C

3 – 5V I2C $16.30 Uses the MAX30105 module
and is used for heart rate,
oximeter, smoke sensor.

Selected Sensor:
In the end the PIM-438 was used for smoke detection. This sensor has 3 LEDs (Red,
Infra-Red (IR), Green), a photodiode, and an analog front end. The sensor uses the
photoelectric principle to detect smoke. The sensor uses infrared light (invisible to the
human eye) to check for the presence of airborne particles and the visible light to confirm
whether the particles are smoke. The sensor also fits the requirements for cost, voltage
supply, and signal protocol.

Table 9: Flame Sensors

Name Op.
Temp.

Op.
Volta
ge

Comm.
Protocol /
Output

Cost Notes

ezPyroTM I2C
Pyroelectric
Infrared Flame
Sensor (SMD)

-40 to
+ 85°C

2.7 -
8V

I2C 1 for
$33.45

Thin film digital pyroelectric
IR sensors.
Full frequency range of
flame flicker (3-30 Hz).

Thin Film
Pyroelectric
Flame Sensor

-40 to
+85 °C

2.7 -
8V

Analog
output

1 for
$56

Noise at the signature 8-10
Hz flicker range of a flame
Aperture: 5.2 mm x 4.2 mm
A wide field of view of
typically 100°

QFC
Pyroelectric
Infrared Flame
Sensors,
Analog

−40 to
+85°C

2.7 -
8V

Analog
output

1 for
$73.76

In triple IR flame detection
Noise characteristic at the
signature 8 – 10 Hz flicker
range of a flame. Used for
forest protection. Wide field
of view, typically 100°

KEMET’s QFS
pyroelectric
flame sensors

 1.75
–
3.6V

I2C 1 for
$24.82

High dynamic range to
ensure rapid and accurate
detection of small and large

52

flames, nearby or over larger
distances.
Full frequency range of
flame flicker from 3 – 30 Hz.
90° field view

Analog’s
ADPD2140BCP
ZN-R7
photodiode

-40 to
85 °C

8V I2C

1 for
$2.47

Near Infrared Sensor: IR
array primarily used to
detect for infrared rays
Spectral range from 800nm -
1080nm

Compatible with the
ADPD1080 photometric
front end.

Adafruit
AMG8833 8x8
Thermal
Camera Sensor

Measu
ring
temps
of 0°C
to
80°C

3V or
5V
micro
contr
oller
or
comp
uter.

 1 for
$39.95

8x8 array of IR thermal
sensors.
64 individual infrared
temperature readings over
I2C. Detect a human from a
distance of up to 7 meters
(23) feet.

Adafruit
MLX90640
24x32 IR
Thermal
Camera
Breakout - 110
Degree FoV

Measu
ring -
40°C
to
300°C

3V or
5V
micro
contr
oller

I2C 1 for
$59.95

24x32 array of IR thermal
sensors. 110°x70° field of
view

Melexis
Technology
MLX90640
thermal camera

-40°C
to
85°C

2.9V
to
3.6V

I2C 1 for
$39.95

32X24 IR array of pixels. 2
FOV options – 55°x35° and
110°x75°

Selected sensor:
The Pyreos EPY12241 pyroelectric sensor was chosen for flame detection. Some of the
characteristics of this sensor include: Output sensitivity, Signal to noise ratio, Noise
equivalent power, Specific sensitivity, and Response time. The user is able to adjust the
low pass filter, high pass filter, sample rate, capacitance (gain), and trans-impendence.
The sensor also fits the requirement for voltage supply, signal protocol, and cost.

4.3.4. Software Tools

53

Software tools play an important role in the development of a working system. This section
discusses the different tools utilized to design, develop, or prepare the system. All of the
software used for the purpose of development will be listed here like CAD programs,
Administrative tools, chat applications, and software development tools.

4.3.5.1 CAD Tools

Contained in this section are some of the CAD tools used for this project. CAD tools were
used for the mechanical design of the structure of the project as well as the PCB and
schematic design for the electrical components of the project.

Fusion 360
Fusion 360 Student Edition was used to CAD and render the four preliminary mechanical
designs for this project and the final design. Without mechanical designs for the project,
the system will not function correctly. The mechanical design is almost as important as
the electrical design for this project as the system must operate and exist outdoors with
varying weather conditions and other hazards. Fusion 360 can design parts that might
need to be 3D printed or machined.

KiCAD
KiCAD is used to make the schematics as it is open source, free, and provides all the
tools needed to create any PCBs. Schematics are an important part to the development
process as many bugs and errors are found at this stage and designed out of the system.
Without schematic software, these problems may manifest into larger problems when the
design is put to the test in real life. Furthermore, once money is spent on a faulty design
it cannot be recovered. It is essential that designs be worked out before moving from the
schematic stage. The program then allows the conversion from schematic to PCB Layout.
The data can be sent to a manufacturing facility and they will manufacture the PCBs for
the project. Lastly, the program allows the creation and modification of schematic symbols
and footprints as well as the ability to import them from vendors or distributors that sell
the products.

4.3.5.2 Administrative Tools

Contained in this section are some of the administrative tools used for this project.
Administrative tools are any application that helps in the creation of documentation,
communication, or organization including, but not limited to, file storage on a computer.

WhatsApp
WhatsApp was chosen as the tool for general communication. It is simple and does not
have many integrations as some other chat applications, but it is lightweight and allows
for chatting from a computer or smartphone. This means that the team can always
communicate if necessary. It does not have any limits on file or image uploads as other
chat applications may have. Furthermore, most of the team already had the application,
so it was a quicker way to get started than learning or downloading a new application.

54

Microsoft Teams
Teams is another communication tool chosen to have meetings online. It provides
conference calls, video calls, screen sharing, and file sharing to help organize and meet
up in an efficient way. It is also accessible through phone and computer which allows the
team to communicate easily at any time. The screen sharing feature lets the team
communicate and share instructions and work effectively during meetings. It also provides
messaging and filing system to keep work organized if needed. It can access calendar
information by logging in using UCF knights’ email. Since it is accessible by using knights’
email, each member of the team has an account already created. Given the COVID-19
limitations, Microsoft teams was useful for team meetings and maintaining productivity
despite social distancing.

Trello
Trello allows for task planning and scheduling so that the team knows what project
component is due and when. This also allows each group member to schedule individual
parts of the project, so the big picture is always in sight. The many integrations of Trello
allow the team to do almost anything. Currently, Calendar integration is used so that it
formats all the deliverable due dates into a calendar so that everything can be found
quickly and easily. There is no confusion on when a deliverable is due.

Microsoft OneDrive
OneDrive is a good place for the team to easily share files together. The ease of
OneDrive, compared to other tools like Google Drive, is that OneDrive will sync files from
the cloud to any computer directly. This means files can be edited and
uploaded/downloaded directly from the file explorer. No need for a browser or external
tool. The expansiveness of OneDrive also allows synchronization to smart phones to view
documents on the fly.

Microsoft Word
Since the team is relying on OneDrive, it became clear that using Microsoft office tools to
work on documentation is a good choice. Word features a very comprehensive (but
expansive) collaboration element so that work on a document can be accomplished
simultaneously with all the power of offline editing. All the standard formatting tools exist,
but in addition to that comments can be added, and collaborative chat exists with users
currently editing a document.

4.3.5.3 Software Development Tools

Git
Git is the de-facto tool for version control across software projects. Git works by tracking
changes byte-by-byte to files within a directory. This is useful when multiple users are
editing a file at the same time. The way Git structures itself is by using “branches” which
a user will “checkout” to. When checking out to a branch, the user creates a local copy of
the files stored/tracked in the remote repository of code. The code that is changed locally

55

on the user’s computer is not the same as the code that is in the remote repository. This
is useful as the user can make any changes they want.

If another user wants to make changes to the same file, they clone those changes which
allows them to work on the same file, unencumbered. When these two users complete
their modifications, they will “commit” and “push” these changes to the remote repository,
allowing their changes to become public and Git will automatically “merge” the changes
into the current working branch. As long as there are no conflicts, the changes are
accepted and saved in the remote repository. If there are conflicts (i.e. modifications to
the same place in the file) then the users must manually accept and merge those changes
that are correct. Git can be used to track binary files, but any change to the file usually
results in a large change across each byte of the file thus causing the whole file to be
updated.

Atmel Studio 7
Atmel Studio 7 is the IDE that is suggested to be used with the SAMR35. It includes a C
and C++ compiler for the microcontroller, and so it was used for programming, debugging,
and writing code for the SAMR35. Atmel Studio 7 features a programmer which is
beneficial since the compiler, code editor, debugger, and programmer are all in one
software package.

Python
Python is one of the most popular programming languages known for its ease of use. It
has a simpler syntax and format compared to other languages such as C or Java. It is the
main language used in recent computer vision applications and offers abundant libraries
for implementing them into the project. Other well-known libraries such as OpenCV and
Pytorch uses Python to implement computer vision. Most of the CNN (Convolutional
Neural Network) models are trained and available in Python via GitHub. Tutorials and
other guidance are available due to its popularity which will help in debugging and
constructing the code. It is easy to learn which will save time and improve our system
further.

C++
C and C++ are the standard languages used in embedded programming. As such, C++
was investigated to be used to program the SAMR35. C++ has a lot of features and syntax
taken from the C language but allows for classes and data structures to be built and used
from the standard library that C does not. This means that it could have been easier to
maintain the software written, and it should be easier to implement.
C always followed the paradigm that nothing should be hidden and that it should have the
simplest features so that the programmer is the one to implement all of the functionality.
C++ Follows the paradigm of “C is a good foundation, but we can do better” and allows
for a lot of expanded functionality that the C language does not provide. Other
technologies like Rust were investigated, but C++ is a good mix between object-oriented
software principles and embedded systems. In the end, however, C was used to program
the SAMR35 since it was faster to get up and running. Due to issues with implementing
LoRa, using C++ was not advisable as it took more time to learn and debug.

56

Atom
Atom is a simple text editor that provides syntax highlighting for different programming
languages and formats. It also includes a markdown viewer. Some of the software and
text documents were edited in Atom since Atom provides a lot of plugins for productivity.

Putty
Putty is a terminal emulator and serial console that allows for quick and easy connection
to serial devices. When communicating with a device over UART, especially for
debugging purposes, Putty became invaluable. Since it is a free and open source
program, it was easy to get running and didn’t cost a penny. Putty supports many different
communication protocols other than serial communication like Raw, Telnet, Rlogin, and
SSH. Using a Raspberry Pi, it was useful to use the serial console through the UART pins
of the Raspberry Pi and the Raspberry Pi Zero W could use SSH to communicate with it
via Wi-Fi, assuming we are using windows computers and may not have the ability to
SSH through a terminal.

MobaXTerm
MobaXterm was used in addition to putty. It provides a nicer interface for serial and ssh
connections and also allows users to save sessions so that information like baud rate or
parity does not need to be entered in subsequent connections to the same device.

4.4. LoRa

This section covers the methodologies and lower level implementation of the LoRa
modulation scheme.

4.4.1. LoRa Overview and Definition of IoT

A current “Buzz Word” all over the world is “IoT.” IoT stands for Internet of Things. A
“Thing” in IoT Is some kind of device that is able to sense information about the
environment in which it is placed and transfer that data over a network. IoT devices share
their data by connecting to an IoT gateway or other edge device where the data is sent
to the cloud to be analyzed [41]. This connection together creates better understanding
as the data that is collected can be interpreted in many different ways. The ways it is
interpreted defines what kind of information someone can learn from that data.

LoRa, literally “Long Range”, is a proprietary spread spectrum modulation scheme that is
derivative of Chirp Spread Spectrum modulation (CSS) which trades data rate for
sensitivity within a fixed channel bandwidth [42]. The idea is create a physical layer
protocol that is separate from higher layer implementations which allow the protocol to be
generically used with new and existing devices.
LoRa is bandwidth scalable, low power, and long range modulation technique. It allows a
very large link budget that exceeds conventional FSK [42].

57

4.4.2. Quick Discussion of Common Modulation Techniques

Modulation is the act of changing a carrier signal to transmit information. A Modulator will
turn digital data into an analog wireless waveform and a Demodulator will take the
wireless waveform and convert it back to a digital signal. The goal is to convert this digital
signal into something that can be sent wirelessly without interference to some other
device amidst all the electromagnetic signals currently in the air.

This section quickly covers the three prominent modulation techniques. Modulation
techniques as a whole are not limited to these three and may, in fact, incorporate multiple
different schemes or modifications on these schemes to enhance different features of
their wireless network. This section does not compare or contrast the different methods
and does not explain the advantages of each, only the different methodologies as a whole
to understand LoRa and how its modification on Chirp Spread Spectrum Modulation is
relevant.

Amplitude Shift Keying
Amplitude Shift Keying (ASK) works on the principle that a digital 1 map to the presence
of a signal at some amplitude while a digital 0 maps to the absence of that signal. A device
can send a binary symbol by changing the order of presence to absence of this signal. A
simple view of this technique is for every digital “1” that the device sends, it turns a signal
on and for every digital “0” the device sends, it turns the signal off.

Frequency Shift Keying
A popular modulation technique. Similar to the above, Frequency Shift Keying (FSK)
works on the principle that the two digital states are represented by a constant signal that
varies in frequency. By changing between a high frequency signal to a lower frequency
signal, the device can transmit a 0 or 1.

Phase Shift Keying
The device, in Phase Shift Keying (PSK), will alter the phase of a signal when trying to
transmit information. For example, the signal might be at some frequency constantly, but
if it is a positive signal it might mean a digital “0” but when changed to the negative
waveform of that signal it means a digital “1”.

4.4.3. Chirp Spread Spectrum Modulation (CSS) & LoRa

LoRa uses a modified version of Chirp Spread Spectrum Modulation (CSS). Chirp Spread
Spectrum was developed for radar applications in the 1940’s [42]. It has become more
popular recently as it is low power and great sensitivity. Unlike other modulation
techniques, it seems to have the inherent ability to resist multipath fading, Doppler effects,
and interference in the same bands. The idea is that a “chirp” has a constant amplitude
but the frequency passes through the entire bandwidth in a certain time. If the frequency
increases it’s called an “up-chirp” and if the frequency changes from highest to lowest it
is considered a “down-chirp” [43].

58

The alteration between up-chirps and down-chirps create the symbols for LoRa.

Figure 34: Spectrogram of LoRa physical layer [43]

The image above shows a LoRa frame on the physical layer. The frame consists of 8
preamble symbols, 2 synchronization symbols, the physical payload, and an optional
CRC. The symbols are demodulated as 0’s and 1’s which cat be any kind of packet as
defined by the project.

Lastly, an interesting feature of LoRa is the ability to change the Symbol Rate. By
changing the “spreading factor” used in the LoRa implementation, the device can change
the properties of the signal. LoRa uses three different bandwidths: 125kHz, 250kHz, and
500kHz. As a quick overview of all of this, incrementing the spreading factor by 1 roughly
doubles the time to send the symbol. Therefore, a lower spreading factor results in a
higher data rate and a higher spreading factor results in a longer transmission. Since
there is this relationship, the Symbol Rate can be defined as this relationship here:

𝑆𝑦𝑚𝑏𝑜𝑙 𝑅𝑎𝑡𝑒 =
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

2𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟

This means the device should use a higher bandwidth and lower spreading factor to get
the highest symbol rate. Doing so, however may affect the power consumption during
transmission since time to transmit increases and/or different parts of the internal circuit
may be active at different intervals.

5. Design

This section is a high-level overview of the fire detection system. In this section, there is
an overview of the major function blocks, the use cases, and descriptions of the hardware
and software sub-systems. The design should take components from all the previous
sections as well as considering our design goals and motivation to create the final product.

59

5.1. Use Cases

The system, for all intents and purposes, acts autonomous but users still must interact
with the system for the goal of the project to be successful. These uses are shown in the
following sections.

5.1.1. Uses Case Diagram

Figure 35: below contains the use case for the fire detection system. There are three
uses for the system: the Firewatch Official, the Installer, and a Networked Device. All
three of these users will have to interact with the system.

Figure 35: Use Case Diagram

5.1.2. Functional Design

The system is designed so that a fire watch official can check notifications from the
system. These notifications will detail information about the mesh network and the
individual devices connected to it. The fire-watch official can do no more than check the
notifications and ignore them if he chooses. The Networked Devices and Installation
personnel are the only users who may send notifications throughout the mesh network.
The Installer connects a device to the network by putting the batteries in the device. At
that moment, the device sends a join notification through the network. Before it becomes
a “networked device” the node must join the network and the installer can reset the node
until it joins. A Networked Device will evaluate the sensor and network data and choose
to pass that notification to the mesh network if it meets certain criteria

60

5.2. Hardware Design

The hardware design refers to the electrical hardware that is present within the system.
The hardware must work autonomously with very few failures at all times (day and night)
to align with the project’s design goals and motivations.

5.2.1. Hardware Block Diagram

The following diagram shows the hardware design sub-systems. There are four major
subsystems. The top row of blocks shows the power sub-system. This subsystem is
comprised of the solar panels, battery charging, and battery protection. This filters down
into power regulation to create the specific power rails necessary to power the sensors,
controllers, and the RF circuit. The three other subsystems comprise of the Sensor
circuits, the Sensor control and processing, and the Network control and processing.
These parts of the circuit are dominated by software instead of electrical considerations.
If the serial communication circuits and power circuits are fine-tuned, these 3 subsystems
will work well. The antenna and RF design must have care taken as RF antenna design
must follow specific rules.
In the block diagram, there are some grey blocks that were not completed. This is due to
difficulties with the LoRa technologies that will be explained in later sections. In short, the
network and sensor processing controller was combined into one device (the Raspberry
Pi) and the RF circuit was no longer used.

Figure 36: Hardware Design Block Diagram

61

5.2.2. Microcontroller and Processing Device

The system’s original goal was to make use of two processing devices/controllers. The
SAMR35 and the Raspberry Pi Zero. These two devices allow for much simpler
interfacing and separation of responsibilities for the system. This also allows power
consumption to be at a minimum during down time but the simplicity of programming for
up time. The SAMR35’s responsibilities include the Network control and processing. It
should handle communications within the LoRa network and the connection to the
network. The Raspberry Pi Zero conducts the sensor readings and return its confidence
of how likely a fire is present in the local area. The root node must contain hardware to
receive LoRa transmissions and software to process root node packets, but once it
retrieves the data out of the network, any device can be used (such as another embedded
system or a standalone computer). The SAMR35 internally uses the SX1276 Low Power
Long Range Transceiver. This module incorporates an FSK modem and a LoRa modem.
The device can operate in the 137MHz to 1020MHz range and is compliant with
IEEE802.15.4g. Since this module is built in to the SAMR35, it does not have to be a
standalone device.

In the end product, however, the SAMR35 presented some interesting design challenges
that had to be overcome to produce a working prototype. The SAMR35 is a BGA Package
which means without an x-ray device, the quality of the solder joints could not be
confirmed. It is possible that some of the difficulties of implementing the design come from
this. Another difficult part to implementing the SAMR35 is how new it is. There are a lot
of resources for LoRaWAN, a MAC layer protocol built on top of LoRa. There are not
many resources for just LoRa and the SAMR35. This meant that, to get a working product,
a standalone SX127x chip was used to conduct LoRa transmissions. This chip was
connected to the Raspberry Pi only, and the SAMR35 was not used for network
transmissions.

5.2.3. Hardware Schematics

The following sections are descriptions and diagrams of the hardware schematics for the
project. There are 4 sub-systems regarding hardware: Network, Raspberry Pi, Sensor,
and Power. These 4 sub-systems must work together to do the final goal of detecting a
fire.

5.2.3.1. Preliminary RF/Network Sub System Schematics

62

Figure 37: RF Switch Schematic

The schematic above in Figure 37: handles switching the RF signals so that the device
can use a single antenna. In RX mode, the circuit is slightly different in the way it filters
the signal than in TX mode. The device has two separate circuits on the TX side to select
between different bands and power usages. The selection of the band is determined by
the SAMR35. The schematic for the SAMR35 in Figure 38: Figure 37: is only the
SAMR35 and its immediate connections. Most of the filtering hardware is removed for
simplicity. Its UART ports are routed to the Raspberry Pi. Everything must be 50-Ohm
impedance matched for the RF circuit. A Software defined status LED was given to the
SAMR35 as well.

Figure 38: SAMR35 Schematic

63

Lastly, in Figure 39: there are some oscillators and buttons added for the SAMR35 to
make it easier to use the device. The connector for programming and debugging was
also necessary to include.

Figure 39: SAMR35 Peripheral Components

5.2.3.2. Preliminary Raspberry Pi System Schematics

The Raspberry Pi ended up doing a lot of the work. In the end prototype, the Raspberry
Pi connected to the SAMR35 only through the TX/RX UART pins, however the SPI
connections were used to talk to a standalone SX127x component to handle LoRa
communication. An I2C bus allowed it to easily collect data from all the sensors. The
connections are shown in Figure 40: . Ideally, the Raspberry pi is turned off most of the
time and will be powered up only when it needs to do a sensor reading. For the final
product the Raspberry Pi was powered ON during the entire operation of the device. The
power consumption was more of an issue then but was not detrimental to the
requirements. The Raspberry Pi also was given a software defined status LED.

64

Figure 40: Raspberry Pi Connection Preliminary Schematic

Another important part of the Raspberry Pi circuit is how the Raspberry Pi turns on. The
circuit is shown in Figure 41: . The Relay is connected to the SAMR35 and it is able to
turn on and off the raspberry pi. In the final prototype, the SAMR35 immediately turns on
the Raspberry Pi and does not turn it off. This is because the SAMR35 became redundant
but required to turn on the Raspberry Pi unless the device had a pull-up wire soldered
onto the PCB.

Figure 41: Raspberry Pi Relay Power Circuit

5.2.3.3. Preliminary Power System Schematics

The device is powered with a solar panel that is routed to an LT3652 IC. The 12v panels
keep the charging IC constantly running at the most efficient state. To maintain a constant
output the right solar panel is needed for the system.

65

Figure 42: Voltage Regulator Schematic

The solar panel must output 12 volts nominally to supply the regulator and must have
redundancies to help handle the changing solar radiation levels throughout the day. For
this reason, two panels in parallel with many cells in series is needed to help with these
issues. A panel similar in design to the one in Figure 43 is needed for this project. A panel
like this has many cells linked up in series and then those sets of cells are then paralleled
to prevent one cell getting covered or one cell breaking causing the entire panel to go bad
and stop supplying power to the system.

Figure 43: Top View Solar Panels

5.2.3.4. Sensor Circuit Schematics

This section provides an overview of the sensor schematics for gas, smoke, and flame
detection.

Gas Sensor

66

The BME680 by BOSCH can detect ambient temperature, humidity, and barometric
pressure and, most importantly, a range of gasses such volatile organic compounds. The
sensor is also able to provide the air quality using an index provided below. This gas
sensor can use both I2C and SPI communication protocols. However, for the schematic
above was designed to select I2C.

Figure 44: Gas Sensor Connector

The sensor can detect a range of b-VOCs such as Ethane, Isoprene, Ethanol, Acetone,
and Carbon Monoxide. The output includes raw pressure, raw temperature, raw relative
humidity, raw gas resistance, sensor-compensated temperature in Celsius, sensor-
compensated relative humidity (%), sensor compensated gas resistance (Ohm), Index for
Air Quality, CO2 equivalent in ppm, b-VOC (ppm), accuracy status of IAQ, gas
percentage based on the individual sensor history, as well operational parameters such
as stabilization time status and run in status.

Figure 45: Air Quality Table [44]

Due to COVID-19, there were limitations on tools and resources and restricted access to
the senior design laboratory, the Adafruit BME680 board was used to integrate the
BME680 chip to the final PCB.

Smoke Sensor
Initially, the Microchip technology RE46C190S16TF was intended to be used for smoke
detection. The design includes a photo amplifier to use with an infrared emitter/detector
in pin 3 (Detect). The internal oscillator allows for smoke detection to occur for 100us
every 8.1 seconds; this helps to minimize standby current. When smoke is sensed, the
detection rate is increased for verification purposes. Every 32 seconds, the device checks
for low battery and chamber integrity. The smoke chamber is located between pin 3 and

67

6 and is illustrated below. The internal comparator compares the photo-amp’s output to
an internal reference voltage. When the smoke conditions are met, the device triggers the
local alarm. Below is the schematic of the sensor.

Figure 46: Smoke Sensor Schematic

Due to COVID-19, there were limitations on tools and resources and restricted access to
the senior design laboratory, the PIM-438 board was used for smoke detection instead.
This sensor also used the photoelectric principle to detect the presence of smoke. The
algorithm uses infrared light (invisible to the human eye) to check for the presence of
airborne particles and the visible light to confirm whether the particles are smoke. The
sensor also works in high ambient light, complete darkness, or artificial light. This sensor
was soldered onto the 3.3V, SCL, SDA, and GND pins of the PCB.

Flame Sensor
The flame sensor that was initially intended to use was the EPY12241 SMD chip.
However due to COVID-19 there were limitations on tools and resources and restricted
access to the senior design laboratory. Instead the breakout board for this chip was used
instead. There are five key characteristics to consider when using pyroelectric infrared
detector: output sensitivity that depends on narrow infrared band, signal to noise ratio,
noise equivalent power (NEP), specific detectivity (D*), and response time [45]. The
output sensitivity, D*, SNR, and NEP are dictated by the manufacturer in the module
design. The user, however, has the ability to choose the electrical response time by
adjusting the impendence and capacitance as well as setting the high pass and low pas
filter values and the sample rate of the filter. [46] This sensor will be useful in identifying
flames in low light, such as at the nighttime. To use in the daytime, it must be paired with
PYREOS’ sunlight-rejection sensor.

68

Figure 47: EPY12241 SMD chip

Figure 48: Flame Sensor Schematic

5.2.4. Mechanical Design

The following mechanical designs are potential ideas on how the system will be mounted.
The designs each have 2 components: The mounting apparatus and the system
functional area. The functional area, for these preliminary designs is represented by a 3D
cube. The estimated size of this area is a volume of only 15 by 15 by 15 centimeters. The
3D cube is meant as a guide to see the area in which we expect the structure of the
system to occupy, it is not necessarily to scale. The system was designed in such a way
that it is mounted to a tree or other tall structure. The first design in Figure 49 simply gets

69

mounted to the side of the structure. It has 6 screw holes to allow for mounting. And is
the simplest and quickest to install. This works great for a small system and large trees
as the tree’s trunk will appear as a flat surface at small scales.

Figure 49: Mechanical Design A

The second design, shown in Figure 50, has a large loop that gets wrapped around
something that would fasten the system to a tree. This could be the trunk of the tree or a
branch. It is simple in design and would be easy to install as it just requires one point to
lock the mechanism to the surface. A downside to this design would present itself for trees
or branches with a large radius as the band would have to be large enough to support the
device. This design is scalable with almost any size of the system, big or small.

Figure 50: Mechanical Design B

70

The design idea represented in Figure 51 would get clamped around a tree branch high
in the tree. It is not designed to be clamped around the trunk of a tree. This design would
be attached by clamping the bottom part to a branch like a claw. A difficulty of installation
might appear when trying to install the system in a high/tall structure and mounting it
vertically. Due to the longer arm on the design, it creates a stronger moment of inertia
and could prove difficult to implement with a heavy device.

Figure 51: Mechanical Design C

Finally, the last design shown in Figure 52 is hung on a tree branch or other horizontal
structure. This is a great design for simplicity. It allows the installer to simply hang the
device wherever it needs to be. For quick/temporary deployments it might be the best
solution. For long term deployments, this solution may need some form of bracket or
screws to be inserted to lock the device to its structure so uncontrolled scenarios like
weather or animals cannot move or knock the device off its structure.

Figure 52: Mechanical Design D

71

5.2.4.1. Final Design

The final design, shown below, is one that was optimized for 3D printing for the purpose
of rapid prototyping. It took 26 hours to print this design in its entirety, but it was perfect
for prototyping as it proved that the design had plenty of room for cable management and
showed some flaws that wouldn’t have been caught otherwise. Flaws such as low airflow
in the container when assembled which could be remedied by a simple one inch by one
inch five-volt PC fan. The design could also be optimized by having a ‘tunnel’ through one
side of the box which the gas sensor and smoke sensor could be mounted in and a push-
pull fan configuration could be mounted to each end of this tunnel to pull fresh air across
these two sensors for better readings.

Figure 53: Final Design (open) Figure 54: Final Design (closed)

5.3. Software Design

Similar to the hardware design, the software design must be as reliable as possible and
have minimal failures. When a failure occurs, it must also be able to correct for those
failures or allow for itself to be ignored or disabled until a time when it can be replaced.
The following sections discuss the software designs and the methodology in place to let
the controllers do their job.

Note: In Section 5.3 Software Design, all software functionality designed for the Network
controller has been moved to the Raspberry Pi and the SX127x chip used for LoRa. Due
to implementation difficulties the Network software was never implemented on the
SAMR35, only the Raspberry Pi. The sections below may reference the “network
controller” or SAMR35 and that is to be understood to have become the Raspberry Pi for
the prototype implemented in Senior Design 2.

5.3.1. Design Methodology

The original design methodology implemented for this project is to keep every function
compartmentalized to its own controller. There are two controllers: Sensors/Fire detection
and Network. The Network controller’s job is to join and manage its connection to the

93

network while the sensor controller’s job is only to read all the sensors and determine if
there is a fire.

This idea of keeping the functionality partitioned among the hardware allows for simpler
software to be written and for the system to use the least amount of power possible during
idle. The only interaction between these two controllers is the sensors controller sending
a notification to the network controller that there is a fire, and possibly a small message
string to send along with it. It is possible that other binary data is sent (such as raw data)
and so the two systems will need to be able to communicate simply and effectively (such
as through the SPI protocol or UART protocol).

Network Controller:
The network controller is responsible for making a mapping between itself and the other
controllers already in the network. When joining a network, it will beacon a join request
and the controllers in its vicinity will respond with linking information. This is to ensure that
the controllers can be in the same network and to avoid duplicate packets being sent. The
controller will then continuously listen for packets of data and will absorb packets until a
timeout, or the sending controller decides it is done sending.

At this point, the network controller will send packets to all in its network map (except for
the sender) to attempt to get the data back to the root controller. If it hears any repeated
packets from another controller, then it will discard them. To arbitrate between a busy
network, random delays will be introduced to avoid controllers from responding to other
controllers whose messages are already being sent.

A second function of the network controller is to wake up the Sensor Controller, which
should be shutdown at all times. The Sensor Controller will be woken up in 2 different
cases: A fire has been detected or a timeout has been triggered. This is to avoid
unnecessary power consumption. The Network Controller may or may not send a
notification through the network that the Sensor Controller is turned on or off at any time.

Sensor Controller:
The sensor controller is to stay asleep/shutdown when not reading sensor data or
processing the sensor data. When the Sensor Controller is complete processing its data
it will send a shutdown notice to the Network Controller so it may configure its timers or
send notifications to the network. The Sensor Controller will read all available sensors on
its communication busses and read data from a camera if applicable. Using this data, it
will decide if there is a fire in its vicinity or if there is not a fire. It will report this decision to
the Network Controller and prepare to shut down.

Final Design Changes:

94

In the final design, the network controller became the Raspberry Pi and the Network
software and Sensor Software were run on the same system. To communicate between
the two, a known file was written to or read from between the two processes.

5.3.2. Software Block Diagram

The software block diagram shown in Figure 55: is the basic design that we are following
for the full software package of the system. This diagram does not differentiate between
the network controller or the sensor controller, so it appears as one conclusive system.
This is how the final prototype was implemented. In the original design, the “Main Loop”
and the Network side of the diagram is managed by the SAMR35 and the Sensor Data
side of the diagram is managed by the Raspberry Pi. The data path between the two
systems will be worked out as an “on chip” communication bus between the two systems.
In the final design, the data bath between the two “systems”/processes became a known
file in the Linux file system.

Figure 55: Software Design Block Diagram

5.3.3. Network Software
The network software can be complex and so many diagrams were made to keep track
of how it all works. The following sections within Section 5.3.3 discusses the Network
Software specifically.

5.3.3.1. Network Flow

95

This section describes the “Network Flow” of the system. The network, in normal
circumstances, is not busy. Most of the traffic exists when broadcasting a message to or
from the root node as it must propagate through the network to its destination. Figure 56:
describes a Join Request case.

Figure 56: Join Request flow diagram

When a Join Request is received the currently “Not Connected Node” broadcasts a Join
Message and all connected nodes in the vicinity respond with an acknowledgement. This
acknowledgement is important so the previously disconnected node knows that another
node can hear the message. After some time, the node sends a join message to the root
node through the network to request for an acknowledgement from the root. As far as all
the connected nodes are aware, this new node is sending messages through the network
but has not “joined” the network. Once the “not connected” node hears the
acknowledgement from the root node, it will consider itself “Joined” to the network and
attempts to forward packets through the system like any other node. Furthermore, this
acknowledgement contains the time as Unix time so the node can update its real time
clock. A “Not Connected Node” can send messages through the network but will not
forward messages through it. Acknowledgements are generally not required in the
scheme, but without them, there is no way for the node to know that it is correctly
connected to the network. This implies that a “not connected” node can still broadcast a
fire condition but will not send packets through the network from other nodes.

96

Other kinds of messages follow similar protocols as these two messages in some way.
Described in Section 5.3.4, a generic case is shown where a generic message is received.
Figure 57: , below, describes a “Fire Packet” which follows a similar protocol as the
generic case, but with some extra work.

Figure 57: Fire Packet flow diagram

When a fire is detected at a “far node”, that node sends a message to the root alerting of
the fire to the nodes closest to it in a broadcast. These “close nodes” forward the fire
found message to the root node. For every valid fire packet received, the node wakes up
its sensors and begins looking for a fire to report. During this time, it will continue to
normally forward packets as necessary. If the “close nodes” detect fires in their area as
well, they send the “fire found” message to the root node too. To stop the network from
getting busy, the sending nodes of a fire message will stop sending packets after some
time. Eventually, all the nodes will stop reporting the fire continuously and will wait some
amount of time before reporting the fire again.

So far, all messages have been treated as asynchronous and can send at any time. In
the event of a busy network or hot spot (very many nodes in a small area) then some kind
of network arbitration is necessary.
First, it is important to understand that each node maintains a packet buffer to store
received messages before sending. The node holds onto these packets until it is time to
forward them into the network. This buffer only contains packets that need to be
transmitted, not packets that are invalid or are internally processed. This buffer needs to

97

be sufficiently sized to handle a busy network with many forwarded packets. To arbitrate
who may send, nodes that receive packets that require transmitting a message (such as
forwarding the message) wait a random amount of time before sending their message.
Each node will assume that after this amount of time, they may send a packet. Receiving
a message during this delay will increase the timer by some factor to ensure that the
waiting node does not interrupt a current transaction. Ideally, each node maintains its own
state such that it can forward messages without losing state while waiting for an
acknowledgement or response. This scheme alone appears like it may work but runs the
risk of packets never forwarding through the network if the network is busy. The packets
will eventually be forwarded since the network will eventually go silent and packets will
slowly trickle through the system until they all go through. In future implementations
packets going through the system should be assigned some priority (on a first come first
serve bases) that is supplemented by the type of packet that comes through (for example
a “Fire Packet” might have higher priority than a “Join Request” Packet). Higher priority
messages are sent first before lower priority messages. Lastly, messages that sit in the
buffer longer than other messages should accrue a higher priority than their initial priority.
This ensures that packets, eventually, get through the system. Some packets may not
gain a higher priority past some maximum. This allows for some packets to always have
a higher priority overall to other packets (for example a “Join Request” might always have
a higher overall priority than binary data).

The last bit of arbitration is to ignore repeated and invalid packets. Since it is a mesh
network with different nodes receiving different messages, packets that are repeat
packets are to be ignored by the receiving node. In this case, if multiple nodes can hear
each other, they do not send packets in a cyclic pattern and then get stuck in a loop of
transmissions. If a packet is received from the same origin multiple times it will be
considered invalid and will be ignored. This invalid state persists for some time to avoid
packets getting through cyclically. After enough time has passed for that packet, the state
will no longer be considered invalid and a repeated packet can get through. Packets that
come from the same sender will be allowed to pass through multiple times to allow for
valid repeat transmissions. This means that before forwarding a packet, the node must
check the origin of the packet and the sender. If the sender and origin are the same, or
the origin has not been heard from before, then the packet is valid. If the packet has come
from that origin before and the sender is different than the first sender, then the packet is
ignored and considered invalid. This methodology, in theory, creates multiple paths from
the origin point to the root where repeated packets are also sent along this path. The
quickest path to the root node is the path that will prevail in transmitting the message
along that path. In future implementations, nodes should remember where packets
successfully arrive from and acknowledgements should get forwarded along this path. It
is a stretch goal that the original join request and subsequent heartbeat packets
determine this ideal path and set it up as the primary path that messages get sent along.
This may avoid issues with clogging the network and may act as a form of load balancing
over time. The system does not support load balancing of this form as of the final
prototype implementation.

98

5.3.3.2. Network State Machine

This section discusses the different states that the network controller has at the time of
the final implementation. To make software easier to implement, a state machine will be
used for the embedded software design. This state machine will allow the network
controller to understand its state and environment and keep the code compartmentalized
and simpler to maintain. The state diagram below shows the transitions between states.

Figure 58: Network Control State Diagram

The state transitions are not too complex. Structuring the software in this way allows each
individual state to be simple code compared to complex code as well.
The initial state is the Network state. This state handles storing all network data to non-
volatile memory if it changes and to determine if the device is in a valid network.
“Heartbeat” packets may be sent in this state as well. Notice that there is no state for
receiving packets on the network. This is because receiving packets will be serviced in
an interrupt. After the Network state, the system transitions to “Waiting” which resets the
timer to its delay time and waits before moving to the “Detection” state.
From here, if there are packets to send then the system will do so in the “Send_Buffer”
state. After the timer is finished, the “Detection” state is invoked. During this state, nothing
happens. A loop will wait until the timer is done running to move on. This state waits for
the Raspberry Pi to finish reading the sensors and to acknowledge that it has detected a
fire. The system will wait for the Raspberry Pi to finish for an indefinite amount of time.
After the response, the state transitions to “Send_Buffer” again to offload any forwarded
packets and fire packets.

99

State Next State Transition
Condition

Previous State Description

Network Waiting A network has
been joined

Initialization or
Send_Buffer

Saves Network
State and other
tasks Network Join No network has

been joined yet

Network_Join Waiting Network Joins the
Network

Waiting Send_Buffer Timer is not
done

Network or
Network Join

Waits for timer
to finish.

Detection Timer is done

Send_Buffer Network No more
packets or
Timeout

Waiting or
Detection

Send packets
from the packet
buffer

Send_Buffer Packets to
send

Detection Send_Buffer Waiting Waits for the
raspberry pi to
detect a fire

Table 10: State Transitions

5.3.4. Software Events & Flow
This section discusses the software events and flow that happens in the system. It
includes charts and descriptions of both parts of the software system: The SAMR35 and
Raspberry Pi.

100

Figure 59: General software flow when power is applied to the system

The image above is the process the system takes when power is applied to the system.
Once the SAMR35 is ready to begin running instructions, it begins this process. First it
must check if it has joined a network already. If it has joined a network already, then it
skips the join process. Skipping the join processes is critical to not get stuck in the edge
case where it can be heard by the network but cannot receive messages. In this case, it
can still send messages even though it is not “joined” to the network. The system sends
a join request to the network. During this time the node takes a randomly generated UID
and will broadcast this UID to the network. An acknowledgement is expected from at least
one network node which will confirm the UID and allow the node to attempt to send a
packet to the root node. If an acknowledgement is received and claims that a UID is
invalid, the system will select a new UID and try again. This is rare and shouldn’t happen.
Once a valid acknowledgement is received, the node waits to hear the acknowledgement
from adjacent nodes and then transmits a packet to be forwarded to the root node. As
mentioned in the last section, it is a stretch goal at this point that the node set up some
kind of path memory so that the network can decide on some kind of load balancing
mechanic. Once the root node acknowledges this new node, it will be considered “joined”
to the network and can begin forwarding messages.

101

Figure 60: Raspberry Pi Flow

Once the system has been turned on and joined to a network, it begins a timer. This timer
will be set to wait for the Raspberry Pi. Other timers may be created to monitor health of
the system as well as sending network packets to the network. The most important timer,
however, would be the Raspberry Pi timer. When the timer ends the network software will
read a file written to by the sensor software. The sensor software after a timer will begin
reading its sensors and determine if there is a fire. The Raspberry Pi saves data for the
network software and the network software will decide whether or not to transmit the data.
This may be control packets or requests for data. The data will be accumulated by the
Network Software from the Raspberry Pi. The Sensor software determines if it is done
processing or not and then will alert the Network software that it is finished. When it is
finished, the network software will continue on.

Another important aspect of the system is the actions to be taken when a message is
received. There are many actions that could be taken based on many different parts of
the packet that is sent to the node. All in all, there are 4 major conditions to check before
deciding what to do with a packet. The first action is checking the CRC. If the CRC is bad,
the packet is rejected. A stretch goal may be to send back a negative acknowledgement
so that the packet can be re-transmitted. Otherwise the packet is rejected, and no action
is taken. The next conditions that matter are pertinent if the message’s destination is the
root, the current node, or if it is a join request. If it is neither of these things the packet is
rejected. This is so the network is not clogged by forwarded packets that are unnecessary.
From the perspective of the node, all other non-adjacent nodes are hidden. If it receives
a message for one of those nodes, it is considered an invalid packet and ignores it. No

102

node can transmit to a node that is abstracted by one or more layer. Any node always
knows of the root node. There is, however, a broadcast ID that a node can choose to use
that all other nodes respond to.

Figure 61: Known Connections Diagram – Mesh

If the packet is a packet that must be dealt with by the receiving node, then the node will
determine what kind of reaction is necessary. Sometimes an acknowledgement may be
necessary and at this time the node will broadcast that acknowledgement. Special
consideration is taken for a fire message as this message requires the system to wake
up its sensors and check for a fire in the local area. See the figure below for more
information on the actions to take fore messages that are received by a node. Most
messages require some kind of transmission to be made afterwards.

103

Figure 62: Actions taken on a Message Received event

The Raspberry Pi is an important part of the system as it determines if a fire exists or
does not. From a “black box” perspective, the network controller will periodically ask “is
there a fire to report?” and the raspberry pi responds with an answer. This is done in the
final version by the network software reading a known file and the sensor software writing
a confidence value to the same file. This kind of “request” structure is important as the
network controller may have stored request packets in an internal buffer and there may
be multiple tasks for the raspberry pi to complete when it is ready to receive requests.
This methodology allows for multiple groups of data to be put in the network software’s
send queue and sent, one at a time, into the network. Once the Raspberry Pi has serviced
all the sensors, it informs the network software that it is done so the network software can
continue. It is up to the sensor software to decide if it is finished or read sensors or do
whatever it needs to do. The sensor software does not need to wait for the network
software and can immediately finish whenever it decides.

Figure 63: Raspberry Pi decision making

5.3.5. Non-Volatile Storage of Configuration & Packet Buffer Loss

The system stores some information in non-volatile memory to ensure that upon power
loss all configuration items stay intact. Any machine learning, image sensing, and
previous sensed data (with regards to detection confidence) must be saved to non-volatile
memory prior to shut down conditions. The Network software, on the other hand, only
saves its network map to non-volatile memory as a stretch goal. All other data is
considered volatile and can be changed. This decision caries the implication that if the
network is busy and power is unexpectedly removed from the network controller, all
pending packets will be lost. These packets cannot be recovered. Ideally, however, the
network can recover from this immediately since all nodes can forward all packets to the

104

root. In this case, a new route may be found by the network. If the network is not created
with this in mind when installing the network, the node may not be able to transmit to any
other nodes. Packets will be lost with no chance of recovery in this case so care should
be taken when setting up a network.

Figure 64: Lost Packets Diagram

The Raspberry Pi also stores important data like the models used to detect fires since
they will only improve over time. Therefore, current conditions must be saved in such a
way that when power is lost, we do not lose the current state or the previous conditions.
When the Raspberry Pi turns on it will load the data into memory and then process that
data.

5.3.6. Network Packet Types
To transmit and understand information effectively, the system utilizes opcodes to know
which action to take on different packets. The different packets are defined in the table
below. The major packet types are “Fire Packets” and “Join Request” packets. Fire
Packets contain information for the root node of whether there is a fire and at which
location that fire may reside. This packet is forwarded to the root by other nodes in the
mesh, however whenever a node attempts to forward a valid Fire Packet, it also will wake
up the sensors and see if a fire is in its local area. Join Request packets are for nodes in
the local area.

Any node that hears a join request responds and lets the joining node know that it can
hear it and that it is ready to receive messages. The other packets contain information to
or from the root node that may be pertinent. Heartbeat Message packets are periodically
sent out by nodes that are only read by nodes in the local area. The heartbeat may receive
an acknowledgement so that the sender knows it is still in the network and can decide
which nodes are ideal to send to, as a stretch goal. If multiple heartbeats are sent out
without responses, then the sending node may have low confidence that the nodes in its
internal connection list are still connected. “Node Messages” Can be sent from the root
or another node and may contain control data such as a “I’ve heard your message”
response or acknowledgements.

105

Table 11: Packet Types

Opcode Name Purpose

0xA1 Fire Packet Alert that a fire has been detected. May
contain data to describe the sensor
readings.

0xB1 Generic Root
Message

Generic message for the root node that
may contain ASCII text as a payload.

0xB2 Binary Root
Message

Message for the root node that contains
binary data as a payload.

0xC1 Heartbeat Message Packet contains nothing. This is meant to
show that the node is alive.

0xC2 Join Request Request to join the network. Allows the
node to send and receive data from the
network. Contains a randomly generated
UID and possibly other data.

0xD1 Debug Message Could contain anything. Software Defined.

0xE1 Node Message Message to a node instead of to the root
node. Follows the same structure as 0xB1
(Generic Message).

5.4. Computer Vision

Machine learning will be used to implement computer vision for our system to detect fire
in forests. Machine learning is a topical subject that has appeared in recent years. In our
project, it is useful to classify images as “fire” or “not fire”. This classification and
identification of different features of fire makes our design case a decent candidate for
machine learning. By implementing and training a machine learning algorithm correctly,
the system should be able to identify, with confidence, a fire rather quickly.

Although there are many available resources and libraries for computer vision to detect
fires, they are not accommodated to the processing power of Raspberry Pi. GPU is often
used to implement these functions specially to train the model to a certain dataset as it

106

can be very large and may take large amount of processing. Our main task will be
focusing on how to tackle the issues due to utilizing Raspberry Pi such as slower
processing, memory limit, and limited power consumption.

5.4.1. Color Classification plus Optical Flow

Fire is a distinct object in a forest environment. It has contrasting color as well as distinct
movements (flickering and spreading) compared to the rest. To utilize this information,
we decided to implement color classification to isolate pixels with the colors of fire and
detect motion using optical flow with the help of OpenCV.

Figure 65: Overview design of color classification plus optical flow

At least two images are needed for the optical flow to calculate the motion. Thus, two
images will be taken using the camera attached to the Raspberry Pi Zero. Then the
bilateral filter is applied to these images to blur the image while keeping the edges sharp.
By doing so, the colors of fire will appear more sharply and clearly in some cases. Then
the color classification is applied. The range of colors will be defined beforehand. In our
project, we defined minimum RGB values to be (100, 17, 15) and maximum RGB values
to be (255, 255, 180). The pixels will be isolated based on this range of RGB values. The
rest will be masked. To find the contours of the fire, the image needs to be blurred using
Gaussian Blur and resized slightly. Then, it is converted to grayscale to apply thresholds
to the image. The contours are found by applying the findContours method from OpenCV

107

to the threshold image. These contours are then sorted based on the area size. The small
area sizes are ignored to avoid false positives and excess detection.

To utilize optical flow, the original images are used as frame 1 and 2. Then, they are
converted into grayscale. The Gunner Farneback’s algorithm is used for two-frame motion
estimation based on polynomial expansion. The hue value indicates the direction of the
motion while the value plane corresponds to the magnitude of the motion. To find the
contours in the optical flow image, methods used in color classification are similarly used
(Gaussian blur, thresholding, findContours method, sort and restrict by area size). If there
is at least one contour found in color classification, 35 is added to the confidence score.
Similarly, if there is at least one contour found in optical flow, 35 is added to the confidence
score. The last 30 comes from the overlap of the top contours between the two methods.
The overlap indicates that there is an object with colors similar to the fire while having
dense movements. The total confidence score obtainable from the color classification
plus optical flow method is 100 (35 + 35 + 30).

5.4.2. Machine Learning with Raspberry Pi Zero

To have computer vision in Raspberry Pi Zero, we must pick the right packages and
neural network architecture to obtain best possible processing time and accuracy. Upon
experimenting and testing different methods, we found out that TensorFlow 1.8.0 and
Keras 2.1.5 work best with Raspberry Pi Zero using Python 2.7. Since Raspberry Pi Zero
is not optimal to train a model, we utilized Google Colab to train our model and upload
the trained model to the Raspberry Pi to predict the fire in an image taken by its camera
in addition to color classification plus optical flow method.

Due to hardware restrictions and specific need to detect fire, training a model was much
easier than making pre-trained models such as YOLO work in our system. Our neural
network architecture is inspired by the Fire Detection Net [36].

Figure 66: Fire Detection Net Architecture

108

Through several experimentations and testing, we decided to use out current neural
network architecture described in the diagram below. Minimizing the parameters resulted
in 10 to 20 seconds faster processing time, but the accuracy significantly dropped. Thus,
we decided to focus on simpler designs. At the end, we were able to achieve one percent
higher accuracy with the model trained with the network architecture below.

Figure 67: Current neural network architecture

The result of our training is shown in the graph below. It uses binary cross entropy for the
loss, ReLu for activation function, batch size of 32, learning rate of 1e-5, and 200 epochs.
The highest validation accuracy was 93.36%. The accuracy corresponds to the
confidence score (total of 100 for machine learning).

Figure 68: Results of Training

5.4.2.1 Dataset

109

Dataset is a crucial aspect in training the neural network. The accuracy depends heavily
on the quantity and quality of the data. We did not find any free accessible forest fire
specific dataset, so we decided to create our own dataset by acquiring online images
relating to forest fires and forest (with no fire) to train and test our models with the help of
Microsoft API [47]. The training went well for this specific dataset. However, we
hypothesize that for best results, it is recommended to acquire these images by using the
camera attached with the Raspberry Pi Zero so that the model is trained with appropriate
environment and quality of images.

5.4.3. Final Design of Computer Vision

Now we must build the color classification, optical flow, and machine learning together to
calculate the overall confidence score. There are total of 200 confidence score obtainable
from the computer vision aspect. There are other confidence scores obtainable from the
sensors. We take these values and take the average to obtain our final confidence score
(maximum 100). If the confidence score is above 50, there is a fire detected. The
threshold and weights of each sensors should be finetuned for best results. The overview
of the combined software design is shown below.

Figure 69: Overview design of computer vision

6. Testing and Prototyping

Testing the hardware and software was almost as important as the project itself. To
ensure that everything was going to plan, each component and subsystem was tested
separately first and then moved on to a more integrated testing system as time went on.
This increased confidence that the final prototype was as functional as possible since all
the bugs were worked out on a smaller scale before integration. The first section below
deals with the advancement of our knowledge and experience with the subsystems that

110

prepared us for the final design. The sections after deal with testing a semi-final and final
design.

6.1. From Nothing to Something

All projects must begin from somewhere. There are a few subsystems that must work
together to complete the project: Power, Sensors, Network, Processing. This section
deals with the process of prototyping in preparation for a final design.

6.1.1. Power Subsystem

Nothing in the system will function without the Power Subsystem. The power subsystem
utilizes 3 different technologies to allow the full system to work. The first system that
needed to be designed was the power regulation. We had identified through research that
we will be using switching buck regulators for their efficiency. Energy lost to heat would
not be ideal in a battery system. Tunable switching buck regulators were purchased to
aid in simplifying the system and to account for any error in the power delivery. From this
point some calculations were done to determine their efficiency and, using different loads,
we will attempt to prove that the required power can be supplied by the regulator.

After the regulator design was investigated, it was important to work on the battery design.
We simply need to prove that we can charge and discharge batteries. Our batteries and
battery charging circuit were put together on a breadboard and we attempted to charge
and discharge the batteries. Safety was very important as the batteries are an energy
storage device. This proof of concept was able to prove that we can charge batteries and
use them efficiently. A few charge and discharge cycles were observed to prove that the
battery will not deteriorate quickly over the course of only a few discharges.

In the end, the system is meant to be powered from a solar panel. A solar panel was used
to generate power from either the sun or a bright light. Use of the solar panel was
investigated so we could become familiar with the characteristics of the device and how
it affected our circuit. In the end, all three parts of this subsystem was combined with a
simulated load such that we saw the power system could support everything. After testing
this system, a layout was put together to put this system on a PCB and the design for the
mechanical support structure for the solar panels was finished.

6.1.2. Sensor Subsystem

Testing the Sensor Subsystem took place in two parts: retrieving sensor data reliably and
retrieving accurate data. To facilitate these tests, a Raspberry Pi was used so that the
team could become familiar with the Raspberry Pi’s interface and operating system. The
goal of the first portion of testing was to investigate the ease of use of the sensors. The
sensor was hooked up on a breadboard, to power and all the supporting hardware was
given to the device. Then the Raspberry Pi attempted to retrieve data from the device
through I2C. At first the result’s values did not matter; just that results existed. All the
sensors were tested to ensure their suitability for the project. It was at this point that a

111

sensor’s complexity and difficulty was assessed and if it was deemed suitable it would go
into calibration stage. This step was important to determine what sensors would be used
in the final prototype.

Since the flame, smoke, and gas sensors were all modules and did not need test boards
it was simple to test the sensors individually. The flame and smoke sensor both used an
analog front end that converted analog signals to binary unitless values. Once the data
bytes were converted to integers, an algorithm was developed to process the data and
determine if a flame/smoke was detected after exposing the sensor to fire and none fire
conditions. The gas sensor needed 48 hours of calibration before any data can be
processed. Once it was properly calibrated, the data bytes were converted, and the
compensation values were taken into account for calculation of the gas, temperature, and
humidity measurement. The sensor was then exposed to fire and non-fire conditions to
understand the gas measurements range are in the fire. The sensors went through
several testing and calibration to tune the algorithm.

The camera will be attached to the Raspberry Pi and can be operated through commands
or Python file. It will be able to record a video or take images depending on what the user
needs. Testing both functions will be beneficial to ensure proper operation of the camera.
For computer vision, it is important that the camera will be able to save multiple images
to designated folder.

6.1.3. Network Subsystem

Testing the Network Subsystem consisted of a few parts to ensure that the Network
software and hardware works all together. The first step was programing some
development kits that use the SAMR34 as the processor. The development kit is the
SAMR34 Xplained Pro Evaluation Kit. The SAMR34 has a built in Semtech SX1276 LoRa
transceiver which gives the team a chance to get a feel for the software and hardware
requirements since the plan is to use the SAMR35 microcontroller. Using two of these
evaluation kits, software is written to send text to a screen when a button is pushed. This
is important as serial communication is planned to be the method of communication
between the Network Subsystem and the Processing subsystem. During testing, the
SX1276 transceiver inside the SAMR34 was not functioning. This could be due to many
things. To get it working, weeks were spent tweaking register values and attempting to
get the system working. In the end, emails were sent to Semtech and Microchip to attempt
to get it working. To get software working for the final prototype, two RYLR896 modules
were bought to just get LoRa working in general with the SAMR34/35.

 From there a program was written to allow a button push to turn on the built-in user LED
on the other device. The LoRa protocol was used to complete this. This proof of concept
step is important as it lays the foundation to sending data over the LoRa based network.
The final piece of testing that went into the development of the system is to have user
input. The user will type a string into a terminal that serially sends the data to the network
controller. The network controller sent this string to the other device and the other device
printed the data to another terminal. After this test, the software was ready to be

112

developed for the mesh network protocol since data can be transferred between the two
evaluation kits. The evaluation kits will be used to develop the software until the time
functioning PCBs for the final system are available for testing.

In the end, the RYLR896 modules worked with the SAMR34 Xplained PRO but when the
final PCB was delivered, soldering issues were suspected with the SAMR35 and so these
modules would not work with the PCB. To mitigate these issues RFM95W modules were
purchased since they use the SX127x transceivers. Since they use SPI with the native
module, the SPI bus was connected to the Raspberry Pi. This meant that the network
software was now to be written for the Raspberry Pi to interface with the module.

The next part of testing for the Network Subsystem is the internal timers and GPIO pins.
On a breadboard, the Network Subsystem connects to LEDs. This is to simulate the fire
condition on the final system. The final round of testing included implementing the
different packets and interpreting the LoRa binary data. This was successful and resulted
in the implementation of the final design as described in this paper.

6.1.4. Processing Subsystem

Testing the Processing Subsystem is important as this is the subsystem that determines
if a fire is in the area. There are three parts to developing the Processing Subsystem. To
test the Processing Subsystem, first, a Raspberry Pi was set up with all the software
necessary to perform computer vision algorithms and run Python code. Ensure that the
camera is working using the Raspberry Pi and able to save the captured images to a
folder accessible for machine learning algorithms. Each sensor outputs raw data that is
then analyzed to create a data processing algorithm in python to determine probabilities
of gas, smoke, and flame.

Since Raspberry Pi Zero cannot handle training the model using its processing power,
we download a trained model into it and run the prediction using that model. To have the
model trained, we used Google Colab, a free cloud service, in order to utilize its free GPU
to train efficiently. It was ensured to install TensorFlow 1.8.0 and Keras 2.1.5 on the
Google Colab notebook as well. Once a model is trained, it was run using the Raspberry
Pi to test it. After testing different versions of Tensorflow, TensorFlow Lite, and Keras, it
was determined that the best version to work with Raspberry Pi Zero is TensorFlow 1.8.0
and Keras 2.1.5. Once the model is ready to be tested, it was run along the other methods
of computer vision which are color classification and optical flow to find the total
confidence score of detecting fire.

However, the subsystem can significantly improve its accuracy by having more data for it
to be trained. The best data would derive from the camera that the subsystem is utilizing
along with consistent environment for it to capture images. By doing so, the neural
network will be able to learn appropriately for its usage and result in higher accuracy
compared to random online images that we currently use as the dataset. This is proven
to work as our current model achieves 93% accuracy testing with our current dataset.

113

The second part of prototyping and testing the Processing Subsystem will be the
interaction between the Processing Subsystem and the sensors. To go about testing this,
the sensors were introduced into the system one at a time and it was ensured that the
connections between the raspberry pi and the sensors works appropriately. For the gas
sensor, a logic analyzer was used to see the signals sent to and from the Raspberry Pi
and the sensor. This testing was meant to focus on the software interaction between the
Raspberry Pi and the sensors since issues were noticed during integration.

Finally, the Sensor software was tested with the Network Subsystem. The Raspberry Pi
attempts to write information to a file. This kind of testing will not focus on the software
interacting correctly as in the final system, although it could simulate it. The goal of this
testing is to verify that messages can be sent reliably between the two devices. The
network software, now written for the Raspberry Pi and not the SAMR35 reads the file
and takes some action based on the values in that file. These values are used later to
determine if a fire is present and allows the network software to send a “fire found” packet
through the network.

6.2. Step-by-Step Hardware Test Plan

Without the hardware, the software cannot do its job. It is imperative that the hardware
operates on a reliable base for the software to be built upon so that the prototype functions
in all conditions: day, night, harsh weather, or perfect, clear skies. The following sections
discuss some of the step-by-step plans for testing the hardware components and why it
was useful to do so.

6.2.1. Power

Stable power is the backbone to the entire circuit. Power is the only sure thing that a
circuit must have working to perform its function. To test the power systems a step-by-
step plan is introduced.

Step-by-step:

a. Set up all power supplies to the expected nominal voltage from our solar panels
and allow for as much current draw that is necessary

b. Test all power converters and regulators separately and measure their outputs.
Test them under the expected load of the system and make sure they perform.

c. Modify the load and map their efficiency to ensure proper operation.
d. Starve the converters and regulators of current and observe their effects on the

simulated load. Make note of the minimum current the converters and regulators
can maintain

e. Repeat the above steps for lower than nominal voltages and higher than nominal
voltages. Do not exceed the recommended highest voltage of each converter or
regulator.

114

f. Test different circuit protection techniques to help for overvoltage and overcurrent
conditions.

g. Set up the charging circuit for the batteries and give it nominal conditions for
charging and observe the effects.

h. Connect all the systems together, including power supply and load to get a fully
working power system.

i. Shift the power supply to a solar panel and test it with a bright light source and/or
sunlight.

6.2.2. Hardware Sensor Testing

Sensors will require hardware testing and software development discussed later in the
paper. Hardware testing of the sensor included testing the physical capabilities of the
sensor. The sensors use I2C, therefore it is important to ensure the sensors are visible in
the I2C-detect when connected to the raspberry pi. Therefore, a testing procedure must
be put in place.
Step-by-step:

a. Power sensors and connect SCL and SDL lines
b. Establish connection between raspberry pi and sensors through I2C

communication to see if results can be read.
a. Create a circuit for the sensors and see if they respond to any external stimuli:

a. Gas sensor will be exposed to nearby smoke and fire to test detection of
organic gases, and measure temperature and humidity levels.

b. Flame sensors will be exposed to nearby flames to detect flame flicker
c. The camera will be exposed to nearby flames to record fire and non-fire

data as explained in section 6.3.3 Computer Vision
d. Smoke sensor will be exposed to nearby smoke to assess smoke is

detected.
c. Hardware testing went through multiple trial and error runs with varying levels of

gas, smoke, and flame exposure to not only obtain raw data but also to test the
minimum and maximum capabilities of the sensor. Understanding the minimum
and maximum capabilities will help determine the distance range between each
device in the forest.

d. Then the software code was written to read the result and try to get meaningful
data after converting data bytes to integers. The output was checked to see if fell
within an expected and acceptable range.

e. The sensor reading was converted to meaningful “real world” values and ensure
they are acceptable for real world scenarios (especially the current scenario the
sensor is in).

a. Gas, temperature, and humidity measurements in ohms, Celsius,
and %

b. Flame and smoke sensors to count the number of consecutive
True changes detected.

f. Provide the data to machine learning engineer to use for algorithm development.

115

6.2.3. Controllers

Testing the controllers is important since these pieces of hardware control everything.
Each system has its own set of requirements, however.

6.2.3.1. Raspberry Pi

The Raspberry Pi is a computer with a very small footprint. Since it runs a distribution of
Linux, we should ensure that the Raspberry Pi can boot properly and can run software.

The test procedure is step-by-step as follows:

a. Boot into the Raspberry Pi operating system and interact with the terminal
b. Write some software to toggle GPIO pins, maybe to turn on and off an LED
c. Record power usage under idle and stressed conditions
d. Output SPI, I2C, and/or UART with the Raspberry Pi.
e. Using one of the voltage regulators in the Power subsystem, power the raspberry

pi from that instead of the normal USB power (using pins 2 or 4 on the header
pins). Repeat the following steps to ensure everything is working.

6.2.3.2. SAMR35

The SAMR35 is a full-on embedded microcontroller. As such, it does not use an operating
system (unless one is uploaded onto it). For hardware testing, a simple plan can be put
in place to test the different possibly required peripherals and ensure the chip is working
correctly.

Step-by-step:

a. Program the chip to toggle a GPIO pin, possibly turning on and off an LED. Use
delays based on timer interrupts if possible

b. Program the chip to output SPI, I2C, and/or UART
c. Record power usage under idle and stressed conditions
d. Using one of the voltage regulators in the Power subsystem, power the chip from

that instead of a power supply
e. If using a Real Time Operating System, schedule two jobs to run concurrently

and see how they interact. Using an oscilloscope see the delay between the two
jobs if running concurrently.

f. Test RF capabilities if applicable/possible. Note: This step was attempted over
weeks of development and did not result in success.

6.2.4. Radio Frequencies

Testing RF designs can be challenging. Testing this assumes that the SAMR35 has been
tested and that some software has been written to interact with the LoRa peripherals. The
following steps would have been done if the SAMR35 was successfully programmed to
output LoRa.

116

Step-by-step:
a. Program the chip to send out data whether it be FSK or LoRa.
b. Watch a spectrum analyzer to see if that data is being transmitted in the air and

if it is being transmitted properly
c. Take two devices and attempt simple communication, possibly light an LED on

received data. Attempt to transmit larger packets as well like strings. Investigate
streaming data.

d. Range test: With a working simple communication test, do some tests in different
environments with range. Some ideas include: Line-of-Sight, in or around
buildings/urban environments, wooded/forest environments. See how the range
is affected. Measure results every 100-200m and expand until range is
compromised.

In the end, the SAMR35 was not used to produce LoRa signals. For the final prototype
separate SX127x modules were used. To test these modules, the following steps were
used.

Step-by-step:

a. Program the Raspberry Pi to send SPI to the SX127x and get version information
b. Send a test transmission through LoRa to another Raspberry Pi
c. Print that data to a file
d. Implement basic packet structures
e. Send data that specifically turns on an LED

6.3. Step-by-Step Software Test Plan

Software is an important and critical piece of the prototype and must be done correctly to
determine if there is a fire. Thus, proper testing of the software is important. The following
sections outline step-by-step plans to testing the software components and why it might
be useful to do so.

6.3.1. Connection Between the Hardware and Software

The hardware and software must work together to have a working prototype. To make
sure this is the case, simple software was written to calibrate, initialize, test, and train the
sensors and cameras to detect various characteristics of fire. This allowed the team to
see if the implementation and ideas are feasible or if the implementation needs to be
adjusted. The results from testing are then tuned to ensure that the sensors and camera
were able to detect fire.

6.3.2. Software Development for Sensors from Hardware Testing

117

The sensors play an important role in the process of determining if there is a fire.
Computer vision method is one option and will be discussed further in the paper; however,
the other sensors can provide us with more confidence that there is, indeed, a fire. The
sensors were used to monitor the environment and support computer vision in fire
detection. The data from sensors can also provide indication on the type of fire. Sensor
operation is depicted in the diagram of figure 74. Each sensor has its own data processing
algorithm, which is discussed below:

Gas:
The data collection for the gas sensor is very straightforward. Since this sensor was
calibrated for a long time, the measurements are stable and relatively accurate. The raw
measurements for temperature, humidity, and gas are obtained and then compensated
to improve accuracy. The final values are calculated in Celsius, percent, and ohms to
interpret the data. Temperature and humidity readings from the can be used to monitor
the environment and a warning can be sent when high temperatures exist in a dry
environment. In fire conditions, the gas measurement rises significantly higher compared
to non-fire conditions. When a gas measurement reaches a maximum value, a warning
is sent to indicate high levels of volatile organic compounds present in the atmosphere.

Smoke:
The PIM438 module which includes the MAX30105 module receives a raw data from the
IR and Visible light detector. The algorithm is designed to take the mean of incoming data
and look for changes between the means by taking the difference between the recent
mean and the mean taken X readings ago (delta). A change is detected when the delta
value is greater than the threshold value. The mean size, delta size, and threshold can
be tuned to increase data smoothing and sensitivity. A function was created to count the
maximum number of consecutive True changes. If this value is greater than a set value,
then flame has been detected.

Flame:
The sensing element in the ePY12241 provides an output current that is proportional to
the rate of change of temperature of the material. The chip uses an analog front end to
receive an analog signal, which is then filtered by a high pass filter. The signal then goes
into a sigma delta ADC convertor. Then, the low pass filter removes large frequencies,
and the data is then read by the MCU.

A data window is specified, and the RMS of the raw signal is taken to determine the signal
strength of the combination of the frequencies in the bandpass of the filters used. The
reading is then divided by the signal multiplier, which is the sample rate. From here the
flame algorithm is similar to the smoke algorithm where the delta is calculated from the
current value and the value X readings ago. A change is detected when the delta value
is greater than the threshold value. The RMS data window, mean size, delta size, and
threshold can be tuned to increase data smoothing and sensitivity. A function was created
to count the maximum number of consecutive True changes. If this value is greater than
a set value, then flame has been detected.

118

𝑅𝑀𝑆 =
√(𝑑1)2 + (𝑑2)2 + ⋯ (𝑑𝑛)2

𝑛

dn is the raw data collected from the pyroelectric infrared detector.
n is the number of data collected in a data window (data window size).

Integration:
After exposing the three sensors to a fire burning in a grill, each sensor was able to
successfully detect a fire. The gas sensor showed that when its exposed to a fire, the

temperature increased greater than 60C and the relative humidity was greater than 60%.
However, this does not entirely indicate there is a fire, rather it can be used to determine
potential forest fire condition. In other climates, the humidity can be lower. The gas
measurement in ohms was significantly higher than in non-fire conditions.

The smoke sensor was able to detect more than 20 consecutive True changes which
satisfied the requirement for smoke detection.

With a nearby fire, the most significant bit of the sensor is set which resulted in a flame
detected. During a test using a lighter placed approximately 1m away in low light, the
flame algorithm was able to detect flame with 10 consecutive true statements. This is
expected since the lighter produces a smaller flame. The thresholds, channel and analog
settings can be adjusted to increase or decrease the algorithm’s sensitivity.

6.3.3. Computer Vision

The color classification and optical flow can be tested using the Raspberry Pi Zero. It is
important for the camera was compatible Raspberry Pi Zero.

Step-by-step:

a. Install OpenCV and other basic packages to Raspberry Pi Zero
b. Enable camera and reboot
c. Test the camera to ensure it operates properly and saves the image through

commands
d. Create a Python file to run the camera and save images to a folder
e. Create a Python file to run the code for color classification and optical flow by

reading images saved in the folder
f. Finetune the parameters in filters, saturation, and so on
g. Check if the confidence score is properly saved in the designated txt file for later

use

Here are several sample images from to ensure the code is working properly.

119

Figure 70: Sample results using color classification and optical flow

The figure above shows the original image on the left, the color classified image on the
middle, and the image from optical flow on the right. The range of colors to be detected
can be adjusted for better results.

Figure 71: Sample results of contouring

Detection of contours can also be adjusted by the area size, filters, and thresholding.
Finetuning will most likely be necessary for specific environment.

For testing the machine learning, Google Colab and Raspberry Pi Zero are needed. The
Raspberry Pi Zero cannot train a model due to its limited processing power. Thus, Google
Colab becomes handy in training model and testing the model before running it in the
Raspberry Pi. For both Google Colab and Raspberry Pi Zero, ensure that TensorFlow
1.8.0 and Keras 2.1.5 are installed for Python 2.7.

Step-by-step: Google Colab (can be ran with Python 3)

a. Ensure the correct version of TensorFlow and Keras are installed
b. Ensure access to the dataset
c. Train a model
d. Observe the training loss and accuracy
e. Adjust hyperparameters as needed
f. Test the trained model

Once the model is trained, it is ready to be used in Raspberry Pi Zero.

Step-by-step: Raspberry Pi Zero

120

a. Ensure the correct version of TensorFlow and Keras are installed
b. Ensure to have the correct trained model
c. Test the model
d. Observe the accuracy, it will correspond to the confidence score
e. Adjust hyperparameters as needed
f. Combine the code from color classification and optical flow

There should be two confidence scores resulting from the color classification plus optical
flow and machine learning which are saved in shared file for later integration with the
sensors.

6.3.4. Networking

The network hardware was tested in a step-by-step procedure. First, sending simple
strings between the devices. Once strings were sent, the software could be developed.
These tests describe the testing done after the switch to using the Raspberry Pi with LoRa
modules instead of the SAMR35.

Step-by-step:

a. Turn on LoRa modules with Raspberry Pi and configure them to send/receive
LoRa frames.

b. Set up receiver to wait for RX interrupt and print string that fired that interrupt to
the terminal

c. Write to the transmit FIFO with SPI on the transmitter.
d. Read back the FIFO to confirm that it is saved
e. Set the transceiver to “TX” mode
f. Watch the terminal

From this point on, the device is ready to run the Network Software.

6.4. Prototype Construction

The sensor subsystem, power system, and RF subsystem were individually designed on
KiCad and then integrated into a single schematic using hierarchical pages. The PCB
layout was then routed. Using any PCB manufacturer, the specifications of the PCB used
to purchase it are a 2-layer FR-4 PCB with 0.8mm thickness and 6/6mil minimum
track/spacing. The minimum Hole size was .3mm and lead free HASL was chosen for the
surface finish. 1oz copper was used as it was cheaper. To solder the surface mount
components on the top layer, a stencil was also purchased.

6.4.1. Equipment

The follow equipment was used to complete testing and building the prototype:

121

A soldering iron kit with lead free solder, hand-held multimeter, tweezers, plyers, logic
analyzer, breadboard, general components (such as resistors, capacitors, inductors),
jumper wires, and wire strippers.

6.4.2. Bill of Materials

The following table is a detailed bill of materials of the parts and components used in
the project.

Table 12: BOM

Part Name General
Descripti
on

System Part
Number

Qty Unit
Cost

Total
Cost

Suppli
er

Solar Panel Solar
panel

Power Generic 2 $4.99 $9.98 Ebay

AC-DC 5V
3A

power
supply

Power AL5V3ABK 1 $8.99 $8.99 Amazo
n

MSOP to
Dip SMT
Adapters

adapter Power IPC0078-
ND

1 $6.29 $6.29 Digikey

Analog
Devices
LT3652EM
SE#PBF

Li-Ion
charging
IC

Power LT3652EM
SE#PBF-
ND

2 $7.61 $15.22 Digikey

BK-18650-
PC4

Double
18650
Cell
holder

Power BK-18650-
PC4-ND

1 $5.73 $5.73 Digikey

EEU-
FC1V391S

Capacitor Power P10300-
ND

1 $0.28 $0.28 Digikey

EMK212BJ
106KG-T

Capacitor Power 587-1295-
1-ND

2 $0.20 $0.40 Digikey

ECA-
1EHG101

Capacitor Power P5540-ND 1 $0.29 $0.29 Digikey

08053C105
KAT2A

Capacitor Power 478-5030-
1-ND

1 $0.26 $0.26 Digikey

MBRS130L
T3G

Schottky
diode

Power MBRS130
LT3GOSC
T-ND

3 $0.47 $1.41 Digikey

LQM18FN1
00M00D

Inductor Power 490-4025-
1-ND

1 $0.15 $0.15 Digikey

ERJ-
3EKF7873V

Resistor Power P787KHCT
-ND

1 $0.10 $0.10 Digikey

122

MCU0805-
100K-
CFCT-ND

Resistor Power MCU0805-
100K-
CFCT-ND

2 $0.39 $0.78 Digikey

A102249CT
-ND

Resistor Power A102249C
T-ND

1 $0.19 $0.19 Digikey

619kOhm Resistor Power RMCF080
5FT619K

1 $0.10 $0.10 Digikey

412kOhm
resistor

Resistor Power 541-
412KHCT-
ND

0 $0.10 $0.00 Digikey

412kOhm
resistor

Resistor Power RC0603FR
-07412KL

1 $0.10 $0.10 Digikey

CRA2512-
FZ-
R050ELF

Resistor Power CRA2512-
FZ-
R050ELF

2 $0.60 $1.20 Digikey

CRA2512-
FZ-
R100ELFC
T-ND

Resistor Power CRA2512-
FZ-
R100ELFC
T-ND

2 $0.56 $1.12 Digikey

910-
PA0006

16 SOIC
to DIP
adapter

Sensor PA0006 1 $4.09 $4.09 Mouser

Pyreos
EPY12241

Flame
sensor

Sensor EPY12241
-B1

1 $41.5
4

$41.54 Mouser

Microchip
Technolog
y 579-
RE46C190
S16F

Smoke
Sensor

Sensor RE46C190
S16F

1 $1.30 $1.30 Mouser

Sensiron
SVM30-J

Gas
sensor

Sensor 403-
SVM30-J

1 $20.8
0

$20.80 Mouser

100uF Capacitor general GRM31CR
61A107ME
05L

1 $0.78 $0.78 Mouser

10uF Capacitor general C0805C10
6M9PAC

2 $0.15 $0.30 Mouser

1uF Capacitor general 885012207
078

3 $0.10 $0.30 Mouser

4.7uF Capacitor general 0805X475
M250CT

1 $0.10 $0.10 Mouser

33uF Capacitor general C2012X5R
0J336M12
5AC

1 $0.87 $0.87 Mouser

.1uF Capacitor general 0805ZD10
4KAT2A

14 $0.10 $1.40 Mouser

https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/vishay-beyschlag/MCU08050C1003FP500/MCU0805-100K-CFCT-ND/2607925
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CPF0603F280KC1/A102249CT-ND/2728225
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CPF0603F280KC1/A102249CT-ND/2728225
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CPF0603F280KC1/A102249CT-ND/2728225
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CPF0603F280KC1/A102249CT-ND/2728225
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059
https://www.digikey.com/product-detail/en/bourns-inc/CRA2512-FZ-R100ELF/CRA2512-FZ-R100ELFCT-ND/1775059

123

33pF Capacitor general VJ0805A3
30GXXCW
1BC

1 $0.29 $0.29 Mouser

4.7pF Capacitor general VJ0805A4
R7BXXCW
1BC

1 $0.10 $0.10 Mouser

17pF Capacitor general 0603N170
J500CT

0 $0.10 $0.00 Mouser

17pF Capacitor general GRM0335
C1H180G
A01D

2 $0.10 $0.20 Mouser

4.7nF Capacitor general 885012208
007

1 $0.14 $0.14 Mouser

3.9pF Capacitor general 0805N3R9
B500CT

2 $0.13 $0.26 Mouser

22pF Capacitor general VJ0805A2
20GXXCW
1BC

1 $0.29 $0.29 Mouser

18pF Capacitor general 0805N180
J500CT

1 $0.10 $0.10 Mouser

3.3pF Capacitor general RF18N3R3
B250CT

3 $0.28 $0.84 Mouser

8.2pF Capacitor general 08053A8R
2CAT2A

1 $0.23 $0.23 Mouser

5.6pF Capacitor general 06033A5R
6BAT2A

2 $0.76 $1.52 Mouser

1nF Capacitor general 885012207
033

1 $0.10 $0.10 Mouser

47pF Capacitor general VJ0805A4
70GXXCW
1BC

1 $0.29 $0.29 Mouser

2.7pF Capacitor general VJ0805A2
R7BXXPW
1BC

1 $0.25 $0.25 Mouser

Diode Schottky Power STPS2L40
AFN

2 $0.36 $0.72 Mouser

Transistor Transistor
for Relay

Power 2N7002NX
AKR

3 $0.10 $0.30 Mouser

Yellow LED Sensor LTL2R3KY
D-EM

3 $0.10 $0.30 Mouser

Green LED Sensor LTL2R3KG
D-EM

2 $0.10 $0.20 Mouser

IR Emitter
+
Photodiod
e

IR Emitter
+
Photodiod
e

General SEN-
00241

2 $1.95 $3.90 Mouser

124

SAMR35 Network
Controller

Commu
nication

ATSAMR3
5J18BT-
I/7JX

0 $5.64 $0.00 Mouser

SAMR35 network
Controller

Commu
nication

ATSAMR3
5J18B-
I/7JX

3 $5.64 $16.92 Mouser

RF Switch RF Switch
for Band
select

Commu
nication

SKY13373
-460LF

2 $1.20 $2.40 Mouser

Connector Connector
for Flame
Sensor

Sensor 613010218
21

2 $0.74 $1.48 Mouser

Connector Prog.
Conn. for
Smoke
Sensor

Sensor A3B-12PA-
2DSA(51)

2 $0.57 $1.14 Mouser

Connector Connector
for Pi Zero

Commu
nication

613040218
21

2 $1.79 $3.58 Mouser

Connector Programm
ing Conn.
For
SAMR35

Commu
nication

FTSH-105-
01-F-DV

2 $1.47 $2.94 Mouser

Connector Wire
connector
for gas
sensor

Sensor DF51K-
4DS-
2C(800)

2 $0.23 $0.46 Mouser

Connector Connector
for Gas
Sensor

Sensor 455-1751-
1-ND

2 $0.79 $1.58 Digikey

SMA
Connector

Connector
to an
Antenna

Commu
nication

142-0701-
201

2 $2.79 $5.58 Mouser

10uH Inductor General RLB0912-
100KL

1 $0.31 $0.31 Mouser

Ferrite
bead

Inductor General MMZ2012
D121BT00
0

3 $0.11 $0.33 Mouser

2.2nH Inductor General L06032R2
CGSTR

1 $0.61 $0.61 Mouser

33nH Inductor General AIMC-
0805-
33NJ-T

2 $0.14 $0.28 Mouser

11nH Inductor General LQP03HQ
11NH02D

5 $0.21 $1.05 Mouser

125

10nH Inductor General AIMC-
0805-
10NJ-T

0 $0.16 $0.00 Mouser

10nH Inductor general
CE201210-
10NJ

5 $0.11 $0.55 Mouser

100R Resistor General CRCW120
6100RFKE
AC

1 $0.10 $0.10 Mouser

0R Resistor General CRCW120
60000Z0E
AC

10 $0.10 $1.00 Mouser

330R Resistor General CRCW120
6330RFKE
AC

2 $0.10 $0.20 Mouser

1k Resistor General RR1220P-
102-D

10 $0.10 $1.00 Mouser

100k Resistor General RR1220P-
104-D

3 $0.10 $0.30 Mouser

39R Resistor General RN73R1JT
TD39R0D2
5

0 $0.35 $0.00 Mouser

39R Resistor General RT1206FR
E0739RL

2 $0.19 $0.38 Mouser

32.768kHz Oscillator General COM-
00540

2 $1.50 $3.00 Mouser

32MHz Oscillator General 1664-
1300-1-ND

2 $2.91 $5.82 Digikey

Button for
the Join
and Reset

Button Sensor COM-
11997

3 $0.98 $2.94 Mouser

MR5FT50L
0

Resistor Power
Testing

MR5FT50L
0CT-ND

1 $1.54 $1.54 Digikey

EEU-
FC1V391S

Capacitor Power
Testing

P10300-
ND

1 $0.28 $0.28 Digikey

RSMF1JTR
100

Resistor Power
Testing

RSMF1JT
R100CT-
ND

1 $0.37 $0.37 Digikey

MFR-
25FBF52-
787K

Resistor Power
Testing

787KXBK-
ND

1 $0.10 $0.10 Digikey

RSF2JT100
K

Resistor Power
Testing

RSF2JT10
0KCT-ND

2 $0.29 $0.58 Digikey

MFR-
25FBF52-
280K

Resistor Power
Testing

280KXBK-
ND

1 $0.10 $0.10 Digikey

126

MFR-
25FBF52-
412K

Resistor Power
Testing

412KXBK-
ND

1 $0.10 $0.10 Digikey

MFR-
25FBF52-
619K

Resistor Power
Testing

619KXBK-
ND

1 $0.10 $0.10 Digikey

ECQ-
E2105KF

Capacitor Power
Testing

EF2105-
ND

1 $0.58 $0.58 Digikey

1N5822-TP Schottky
diode

Power
Testing

1N5822-
TPMSCT-
ND

3 $0.45 $1.35 Digikey

Lora
Module
SX1276

Communi
cation
Module

Commu
nication

REYAX
RYLR896

2 $19.5
0

$39.00 Amazo
n

JST PH
Cable
Connector

Cable
connector
for gas
sensor

Sensor 26AWG 1 $7.99 $7.99 Amazo
n

Air quality
sensor

new gas
sensor

Sensor SEK-
SVM30

1 $21.2
8

$21.28 Digikey

Pimoroni
smoke
sensor

Smoke
sensor BO

sensor PIM438 2 $16.3
0

$32.60 Mouser

Samsung
18650's

4, 18640
Cells

Power B08C3XG
WG8

1 $28.6
8

$28.68 Amazo
n

m2 Stand
offs
(optional

Litorange
320PCS
M2 Male
Female
Nylon Hex

Sensor 31161816 1 $13.9
9

$13.99 Amazo
n

Raspberry
pi camera

LoveRPi
5MP
Camera
Module

camera B07KF7G
WJL

1 $9.99 $9.99 Amazo
n

Adafruit
BME680

New gas
sensor

sensor BME680 1 $22 $22.00 Mouser

LM2596 DC-DC
converter

power LM2596 1 $11.9
9

$11.99 Amazo
n

128
microsd
card

SD card Commu
nication

MB-
ME128HA

1 $19.0
0

$19.00 Amazo
n

DFRobot
Accessorie
s
Gravity4Pi
n IIC/I2C

Gas
sensor
connector

Sensor FIT0513 1 $6.00 $6.00 Mouser

127

UART
SNSR
Cables

6.5. Testing Environment

There were three conditions to test the prototype in. The first one is direct line of sight
testing which means it must have large empty spaces half a mile to a mile long for the
best-case scenario. The following environments are potential testing environments.

Remote at home testing:
Prior to selecting the final components used for the final prototype, the main components
for each subsystem was purchased to test before determining its suitability. This included
each peer purchasing a raspberry pi, SD card, DC power source as well as the
components each peer was responsible for in the project. This process also included
downloading any relevant software applications and becoming familiar with the chosen
programming language, python.

During at home testing, the peer attempted to test their components in a controlled
environment. The sensors were tested using a lighter to test for flame and gas. Smoke
signals will be tested by burning wood and placing the sensors near the fire. This will also
be necessary for calibrating certain sensors. The camera will be tested in front of fire and
non-fire conditions to save images that will be used for computer vision. This dataset will
be used to train a model that can attempt to identify a fire. The LoRa module was tested
by attempting to establish communication with at least two devices to see if data can be
sent and received. The solar panel system was tested at home to observe and understand
its ideal positioning for maximum sunlight absorption.

On campus testing - UCF Arboretum:
The University of Central Florida has an arboretum that acts as a creative learning
environment. The arboretum includes a 5-acre Cypress dome, an oak hammock of 3-
acres, and 15 acres of sand pine and Florida scrub connected to the original Arboretum
by the saw palmetto community and the longleaf pine flatwoods. Currently the entire area
of the arboretum includes 82 acres [48]. The UCF arboretum has the landscape and
environment for potential forest fires. Thus, it would be ideal to create a controlled fire in
this space and determine if the sensors are able to detect fires. Moreover, testing in this
environment will allow for experimentation with various mechanical designs and
understand which design is best suited for this project. In addition, this will allow the
engineers to understand where is the best placement of the devices on the tress: how
close to the earth can the sensors be placed in order for it to be close enough to detect
the gas, fire, and smoke without interrupting the natural environment and wildlife. Lastly,
the engineers wanted to test the range of the devices using the LoRa module at 10m,

128

50m, 100m, and 150m apart to observe if the communication and data transmission is
still maintained. Moreover, the engineers wanted to investigate how close the sensors
should be for effective fire detection.

Testing in this area will require permission from the UCF college of engineering
department and the UCF facilities and safety department. In the event the project is ahead
of schedule, the engineers were open to the possibility of testing the F.I.R.E device in a
controlled fire that is routinely done by UCF Facilities and Safety team as a prevention
mechanism for forest fires. The UCF arboretum would have been the ideal testing
environment since it is used by students from other colleges for educational purposes.

Due to COVID-19 and social distancing requirements, the UCF campus was closed and
the engineering working in this project could not access the arboretum to test the
prototype. Moreover, the project faced delays to due to lack of equipment and resources,
since the UCF Senior Design labs were closed and not accessible. As a result, this project
was tested outdoors near a barbeque grill where a controlled fire was made to test the
prototype.

Figure 72: Controlled fire at the UCF Arboretum [48]

7. System Integration
7.1. System Design

An overall glance at the system shows the solar array hooked up to an ‘all in one’ LT3652
IC which will output 16.6 volts and a max of 2 amps with the input from the array. That

129

was then feed into a set of Li-ion batteries. That battery was then, with help from excess
power from the solar panel, inputted into two buck converters to make 5 volt and 3.3-volt
rails. These two rails handled power to the entire system as some components require
specific voltages. The 5-volt rail ran the LoRa module and the Raspberry Pi and this rail
pulled the most power out of the system due to how much power a Raspberry Pi requires.
The 3.3-volt rail handled powering all the sensors and pulled less power.

Figure 73: High Level System View

7.1.1. Sub-System Connections

Each system must have all the connections necessary to communicate properly between
each other but inside each system there are smaller components that need their own
source of power or need to be connected to the same node as another system for
grounding or the correct resistive purposes. To make sure everything is wired correctly
the sub-systems were designed using KiCAD’s hierarchical sheet system. Each
component was individually designed and linked together using this hierarchy structure,
so the overall design did not get to cluttered or large to view and edit. Doing the designs
like this also helped with making sure everything was wired correctly in the final assembly
of the system.

7.2. System Operation

The system operates in a cyclic fashion turning on to cycle through all the sensors to
check if there is a fire under certain conditions. This is depicted in the diagram below. It
then processes that information using the computer vison on the Raspberry Pi and state-
space to store and check if the other sensors are within their constraints. If everything is
determined to be fine, then the machine will go back into a sleep mode and wait for its
timer to turn itself back on and run through the same process. If the system runs through
all its checks and determines that there is a fire the LoRa module will then be booted up

130

Raspberry Pi

I2C bus

and that data will be transmitted in a mesh network until it gets to an operator who is
monitoring the overall system. That operator can then check what determined that fire
and decide with human intervention if it is a false alarm or if they need to respond by the
measures deemed necessary.

Figure 74: Sensors data sent to processor

7.2.1. Power system

For the initial setup of the power system all that must be done is connecting the solar
panel array to the board. Next is to connect the two 18650 li-ion cells to the board by
sliding them into the holder making sure to pay attention to the polarity of the cells. After
that the system will automatically turn on using the relay. It is really that simple just
make sure to pay attention to the solar panel and cell polarity.

7.2.2. RF system
The RF system operates on the Raspberry Pi. Running the python script starts up the
software. There is no interaction needed after that point.

Sensor
System

Flame

Volatile
Organic

Compounds

Temperature
& humidity

Smoke

131

To ensure that the mesh network can be joined correctly, connect an SX127x module to
the Raspberry Pi through the following connections (each pin is the BCM pin, not board
pins):
MOSI to 10 MISO to 9 SCK to 11 NSS to 8 DIO0 to 4
DIO1 to 17 DIO2 to 18 DIO3 to 27 RST to 22 LED to 13 (Optional)

The software is no ready to use on a sensing node. The root node needs a similar setup
but different software. The software files are provided. The root node need only respond
correctly to join requests for the scope of the prototype. See the included software written
in Python as an example.

7.2.3. Sensor system
The following instructions explain how to connect the sensors to the raspberry pi.
Prior to running any script, it is important to make sure that the I2C bus is enabled in the
raspberry pi (rasp-config), and that the i2c-tools package is installed in the raspberry pi.

Once this is complete the user can proceed to connect each sensor individually first.

Flame:
The flame sensor requires 5 connections to the raspberry pi explained in the table below:

Flame sensor pin Raspberry Pi pin
Vsupply 3.3V
GND GND
CS 3.3V
SCL SCL
SDA SDA

Once the connections are made, the user can run the i2cdetect -y 1 command on
terminal/command window and must see the slave address, 0x65. Then the user can run
the startflame.py python script to initialize the sensor, then the flame.py python script to
begin reading data and detecting flame.

Smoke:
The smoke sensor requires 4 connections to the raspberry pi:

Smoke sensor Raspberry Pi pin
Vsupply 3.3V
GND GND
SCL SCL
SDA SDA
INT GPCLCK0

The INT pin is an optional connection.

132

Once the connections are made, the user can run the i2cdetect -y 1 command on
terminal/command window and must see the slave address, 0x57. Then, the user can run
the smoke.py script to initialize and begin reading data from the smoke sensor.

Gas:
The gas sensor requires 4 connections to the raspberry pi:

Smoke sensor Raspberry Pi pin
Vsupply 3.3V
GND GND
SCL SCL
SDA SDA

Once the connections are made, the user can run the i2cdetect -y 1 command on
terminal/command window and must see the slave address, 0x77. Then, the user can run
the gas.py script to initialize and begin reading data from the smoke sensor

Ensure that the data read from all the sensors are saved in a shared file. This is for the
system to integrate the data with the computer vision system to output an overall
confidence score in detecting fire.

7.2.4. Computer Vision System

The computer vision system uses Python 2.7 with Keras 2.1.5, TensorFlow 1.8.0, and
latest OpenCV compatible with Python 2.7 for Raspberry Pi while Python 3 with Keras
2.1.5 and TensorFlow 1.8.0 is used for Google Colab deep learning. Installations in
Raspberry Pi Zero may take several hours which is normal. The correct versions are
crucial in making the computer vision system work.

Camera should be connected to Raspberry Pi and operable through commands and
Python file.

As long as the version matches, the trained model should be operable in Raspberry Pi
Zero but not for real-time use. It is best for Raspberry Pi to access images saved in a
folder as it has limited processing power.

The testing of the computer vision system is explained in the section 6.3.3.

8. Administrative Content

The following section is a discussion of the administrative content that comes from a
project. Included will be the division of work, milestones and timelines, information about
our sponsor work for Siemens and our cost.

133

8.1. Division of Labor

The project was divided into multi sub-parts for each team member to work on and
specialize. Each subject is not mutually exclusive however, as the team is expected to
help the others in their designs and research. Table 13 goes into what each team member
was assigned to accomplish as well as a list that breaks down a little more about what
that team member is doing specifically. Table 14 provides a detailed description.
Table 13: Division of Labor

 Area Focus

Noora Sensors Hardware & Software

Nicholas Power & Mechanical Hardware

Jonathan Control & RF Hardware & Software

Arisa Data Processing Software

Table 14: Division of Labor Breakdown

Engineering
student

System components Description

Noora

Flame Sensors
Smoke Sensors.
Gas sensors
Temperature/Humidity
sensors
Data processing

Noora’s focus was on designing the printed circuit
board which will include selecting appropriate sensors
components and ensuring these sensors are able to
detect fire elements such as flame, smoke, and volatile
organic compounds, as well as communicate with the
raspberry pi. Noora worked closely with Arisa to send
values used in the confidence interval after data
processing.

Nicholas

Solar Panel Power
Battery Charging
Protection.
Power Regulation

Nicholas was responsible for designing printed circuit
board that will be used for supplying power to the entire
system. The system will be powered by a solar panel
system. Nicholas chose appropriate solar panels that
will efficiently supply enough power to the system; this
included selecting the right type, model, and size of
panels. Subsystems will need a 3.3V and 5V supply,
thus Nicholas designed the PCB with appropriate
regulators and rails to ensure the components received
ample and stable power supply.

134

Jonathan
Microcontroller Design
Network Software
RF Design

Jonathan was working on the communication between
the devices. This was done through radio frequency
using the LoRa RF module. Jonathan designed the
system to ensure communication between the devices
is maintained and data from sensors can be sent to the
hub using RF waves. Jonathan tested the range of the
system for which data can be sent and design the
communication network of the system.

Arisa

Raspberry Pi Camera,
Sensor Data
Processing Software
Machine Learning’
Raspberry Pi

Arisa was responsible for designing the machine
learning algorithm that took data from the raspberry pi
camera and the sensors. By recording and analyzing
the processed data from the sensors, Arisa trained the
machine to recognize fire and non-fire conditions using
an algorithm. This algorithm will determine forest fire
conditions and recognize all characteristics of fire such
as flame, smoke, and VOC gasses and visual aspects
from the camera. The signal will be sent to the
microcontroller to trigger the fire warning.

8.2. Project Milestones

The following two tables provide timeline of the project in Senior Design 1 and 2. Table 9
was timeline for the spring 2020 semester. During this semester, the background
research on the project’s need, standards, requirements, hardware components,
mechanisms of detection, testing environment, sponsor requirements, logistics, feasibility
is examined through the senior design 1 report. Each peer’s strengths and weaknesses
were identified to be understand how each individual can contribute to the project.
Moreover, areas that can be challenged and improved were also identified. Once this was
recognized, assigning the project tasks and requirement to each peer became a natural
and organic process. By the end of the spring semester, the group and the sponsor had
a reasonable understanding of the project’s scope so that the prototyping stage can
begin.

Table 15: Spring 2020 Milestones

135

Week Milestone (Tasks) Start Date Deadline

1 to 2 Brainstorm ideas January 06,
2020

January 17,
2020

3 to 4 Choose a project and discuss basic
design and roles

January 20,
2020

January 31,
2020

4 Finish Divide and Conquer V1 January 31,
2020

5 Discuss the details of the project February 03,
2020

February 07,
2020

5 to 6 Update Divide and Conquer V2
Finish proposal for sponsor

February 03,
2020

February 14,
2020

6 to 9 Research and fine-tune design February 17,
2020

March 06,2020

9 SPRING BREAK – COVID 19 closure March 09,
2020

March 13,
2020

10 60-page Draft March 20,
2020

10 to 12 Finalize design
Finish technical documentation

March 16,
2020

April 03, 2020

12 100-page Report April 03, 2020

12 to 15 Organize all documentations April 06, 2020 April 17, 2020

15 Submit Final Documentation April 21, 2020

Table 10 below shows the timeline for the summer 2020 semester. Summer was an
accelerated semester with 4 weeks less than the other semesters. This leaves less
opportunity for errors. As a result, after completing a robust report, the summer semester
marked the beginning of the projects prototyping, testing, and implementation stage. The
aim was to complete fulfilling the project’s intended purpose by July 20th. This final
product, as well as electrical and CAD designs were handed off to the sponsor. Moreover,
the senior design 1 paper will be modified to reflect the project’s realistic achievements.

Due to COVID-19, several delays occurred in the project as a result of social distancing
and restricted access to the UCF laboratories. Thus, this schedule includes the
unexpected delays that occurred during the summer 2020 semester.

Table 16: Summer 2020 Milestones

136

Week Milestone (Tasks) Start Date Deadline

1 to 3 Acquire initial components and conduct
initial testing.

May 11, 2020 May 29, 2020

4 Critical Design Review
Presentation preparation and video
editing

June 01, 2020 June 05, 2020

5 Complete KiCad PCB Schematics and
submit order. Order additional parts and
replacement parts

June 08, 2020 June 12, 2020

6 Hardware and software developments

June 15, 2020 June 19, 2020

7 Midterm video recording and editing June 22, 2020 June 26, 2020

8 Midterm demo presentation and meeting June 29, 2020 July 3, 2020

9 Soldering and integration July 6, 2020 July 10, 2020

10 Finalize product July 13, 2020 July 17, 2020

11 Finalize documentation and handover to
sponsor

July 20, 2020 July 31, 2020

8.3. Sponsor Information
8.3.1. Siemens Foundation

Siemens Foundation was founded in 1998 as a non-profit organization in the United
States [49]. The foundation has invested more than $122 million in the United States to
foster an inclusive and innovative culture through a variety of professional developments
programs for the Siemens workforce, STEM outreach activities for youth, and
scholarships for future students [49].

The most notable program is Siemens STEM day which initially was an event dedicated
to engaging K-12 students in a variety of hands-on activities through experiments and
problem-solving exercises. Currently the program has expanded past a one-time event
to a portal that provides employees access to over 150 STEM activities allowing Siemens
volunteers to facilitate STEM day activities any time of the year in addition to STEM day
[49]. These activities range from easy to difficult and revolve around themes popular in
the industry. The STEM kits target students of all ages, however, there is currently a
demand for activities that target older students to emphasize various applications of
scientific knowledge in real life, especially in disciplines that are needed in the US.
Facilitating these activities is important when considering the demand for STEM
professionals and closing the opportunity gap for the youth.

137

Figure 75: 30+ Years of Academic Partnership Between Siemens & UCF to foster the goals of Siemens Foundation
[49]

8.3.2. A Product for Siemens STEM Initiative

Ultimately, the F.I.R.E device will not only serve its purpose of forest fire and detection
and monitoring, but also will be meticulously designed keeping in mind that the product
will serve as an introduction to electrical engineering kit. Through this kit, students will
become exposed to sensor technology, programming and communication through mesh
network, and an optional hands-on experience soldering parts to a printed circuit board.
The importance of engaging the youth in STEM related activities has gained traction due
to the decline in the overall number of students pursuing STEM fields. Thus, exposing
STEM opportunities to young students, especially to students from marginalized groups,
is important in encouraging and fostering a culture of innovation, research, and diversity.
SIEMENS’ STEM initiative is founded on these values. Thus, this product will be designed
to be used in SIEMENS STEM Day activities to expose students to fundamental concepts
of electrical engineering and importance of environmental consciousness.

The product is aimed to be utilized as an advanced activity for students ideally between
the 9 – 12th grade that are in the early stages of exploring and deciding career options to
pursue after completing high school. This project will help introduce and educate students
on a leading environmental issue, forest fires, while also demonstrating how electrical
engineering concepts can be used to solve a growing environmental concern. Moreover,

138

students will also learn about the fire and gas sensors that are used for SIEMENS gas
turbines and how their function compares with the sensors designed in the kit. Overall,
students will gain an understanding of how the system was designed, and how it can be
implemented. This learning kit will also be a unique exposure to engineering project
management and execution.

The objectives of the activity are detailed below:

1. Understanding forest fires, their growing intensity, and how fire emissions are

shaping climate change.
2. Solving this issue by providing proactive solutions to mitigate the risks.
3. Understanding the technology used to tackle the issue:

a. Flame detection (visual and non-visual techniques)
b. Gas detection
c. Smoke detection through photoelectric sensors

4. [Optional] Soldering basic components to a printed circuit board.
5. Straightforward programming exercise understanding how values are read and

communicated in a network.
6. Testing the device and witnessing how it can react to a fire.

At the completion of the project, the final product will be delivered to SIEMENS’ STEM
initiative group with a detailed lesson activity guide for Siemens employers to use for
STEM day activities. In addition, the printed circuit board schematic and design, as well
as any CAD design, will also be provided so that additional boards can be produced for
enhanced learning activity that incorporates soldering components to the printed circuit
board.

139

8.3.3. Connection to the Siemens industry

A significant portion of the project’s requirement and the sponsorship from Siemens is not
only supporting our aspirations of designing this system but also emphasizing how the
product connects to the Siemens industry in terms of the similarities in the technology
and strategies used, as well as the potential opportunity for Siemens to utilize this product
in their industry.

Siemens AG headquarter is in Munich, Germany [49]. It is a multinational conglomerate
and considered to be one of the largest industrial manufacturing companies in Europe.
The main industries it is involved in are: Energy, Healthcare, and Infrastructure. The
Siemens offices in Orlando, FL are primarily focused on power generation, energy
efficient buildings and infrastructure, wind energy, and healthcare [49]. Its proximity to the
University of Central Florida has enabled a partnership allowing for $10 million in
investment for research projects at the university such the Digital Grid Innovation
Laboratory, Center of Innovation for Diagnostics & Prognostics, and the Siemens Energy
Center [49].

8.3.3.1. Gas Turbine

Siemens’ gas turbine manufacturing and commissioning is one of the dominating
businesses in Orlando, FL. Siemens gas turbines range from 4 – 593 MW and are used
for a variety of applications including power generation for utilities, independent power
producers, oil and gas as well as industrial users such as chemicals, pulp and paper, food
and beverage, sugar, automotive, metal working, mining, cement, wood processing, and

Figure 76: Overview of Siemens gas turbines [55]

140

textiles. Siemens gas turbines fall into one of three categories: heavy-duty, industrial, or
aeroderivative [50, 51].

The primary components of the gas turbine using the Brayton cycle is a compressor,
combustion chamber, gas turbine, and generator as depicted below. Siemens gas turbine
control system includes a variety of instruments used to measure the gas turbines
temperature, pressure, speed, and vibration. The main interest for this project will be the
temperature sensing of the system for fire and smoke detection. Current temperature
sensing for the gas turbines includes a gas thermocouple and the infrared temperature
sensor [52, 53].

A thermocouple is composed of two dissimilar metals connected together creating a
junction through welding. [52] One end of the connection is taken for reference and other
end of the junction is used for measurement [52]. Temperature measurement is possible
when there is temperature difference between the two junctions; this causes an electric
current to flow in the circuit [52]. By understanding voltage-temperature relationships of
metal combination, the temperature can be measured [52]. There are many types of
thermocouples; however, type K thermocouple is commonly used in gas turbines.
Siemens SGT-A05 KC uses the Measured Gas Temperature (MGT) thermocouple to
extend the in-service life of the turbine and it is also used in 180 other engines Pictured
below is the MGT thermocouple [54]. The SGT-A05 KB/KH also uses the TOT
Thermocouple or the TIT thermocouple to improve overall accuracy in temperature
monitoring [54].

Figure 78: Thermocouple used in Siemens SGT [54]

Figure 77: Typical gas turbine cycle as stated in [52], the figure shows where a fire and gas sensor
would be needed.

141

Infrared temperature sensors are a good option to use to minimize the contact between
the sensor and the object it is measuring, which for gas turbines is the blade. Infrared
sensors function by “focusing the object’s infrared energy onto photodetectors” [52].
This provides an electrical output signal that is proportional the infrared energy received.
The infrared energy emits varying levels of infrared energy to the object according the
temperature which allows for an accurate description of the object’s temperature [52].
Siemens SGT-750 uses infrared cameras to measure the temperature of the blade
surface [52]. Temperature is recorded each rotation and is used for the cooling system
[52]. Below is an image of the infrared temperature sensor used in the SGT-750.

Project F.I.R.E utilizes similar techniques used in the Siemens gas turbine for fire and
smoke detection. Siemens uses a thermocouple which is a typical choice for a higher
scale, range, and accuracy for heavy industrial applications. In our project, a temperature
sensor IC will be utilized since it will help drive the cost and size down for forest fire
applications. The IR sensor is comparable to the flame detection technique F.I.R.E as it
involves detecting hidden infrared rays to measure thermal heat of the gas turbine blades.

8.3.3.2. Digitalization/Internet of Things

Figure 79: Infrared temperature sensor used in the SGT-750 [52].

142

A growing field in the industry is the digitalization of many products results in a demand
for the Internet of Things (IoT). Siemens offers IoT services ranging from Consulting,
Solution Design, and Solution Development and Implementation which all includes
Change Management and Cyber Security [55]. There are five phases that Siemens uses
for successful IoT implementation detailed below in the diagram [55].

IoT as discussed previously in this paper has the potential to digitalize many industries

including manufacturing, energy utilities, healthcare, transportation and building
technologies, which are the industries Siemens is mostly tied to. Before the users can
benefit from the insights of IoT, data must be collected and sent through a gateway data
communication [55]. The data is then transferred and stored where it can be used to
conduct data analytics and conduct machine learning algorithms [55]. From here, it can
be used to provide insight for efficiency and create better business models [55].

Siemens has been heavily involved in IoT as the possibilities of improving business and
performance for the industries it is involved in are endless. For example, Siemens was
involved in an air quality monitoring system in the city of Nuremberg. Nuremberg city
officials were concerned about the air pollution as a result of increased traffic which made
it difficult for the city to maintain recommended levels of nitrogen dioxide set by the World
Health Organization [55]. Siemens set up an IoT system that allowed it to collect data
such as air pollution levels, weather, and traffic patterns from sensors placed around the
city [55]. This data is then used to forecast the city’s air quality for the next 5 days [55].
With this data, the city is able to take appropriate measures to reduce air pollution levels.
The Siemens City Air Management and the City performance Tool is also able to
conduction simulations and make long term predictions factoring various parameters such

Figure 80: IoT integration cycle developed by Siemens

143

as environmental legislature and new technology; they are now able to make predictions
until the year 2030 with remarkable accuracy [55].

Another case were Siemens was able to utilize IoT was in the case of the Sello shopping
mall in Finland [55]. The shopping mall wanted to increase its energy efficiency since it
accommodates more than 24 million shopper every year. Siemens engineers turned the
mall into a “virtual power plant” and it was able to operate as a load for the Finnish demand
response markets [55]. 2 MW batteries were installed with a solar panel system that
included a microgrid with smart building automation and cloud analytics [55]. The process
took a few years using an iterative approach and followed the five phases depicted in the
diagram [55]. Sensors were installed in the building management system that measured
weather data, energy consumption, energy price, weather forecast data and the amount
of energy stored in the battery [55]. By using smart analytics, an algorithm was designed
to determine whether energy should be drawn from the solar panels, the 2-MW battery
(stored energy), or the national energy provider when electricity rates are low [55]. This
implementation helped reduce carbon emissions and saved the business €643,000
($690,00) [55].

8.3.3.2.1. Siemens IoT implementation phases in F.I.R.E.

Interestingly, this project will adopt similar phases during its life cycle, which is an
important connection this project has to Siemens’ current IoT practices. In the initial
phase, this project underwent strategy development where the best method of fire
detections was investigated. This included identifying mechanisms and principles of
detection that are used in the industry. The challenges were also explored, such as range
and scalability during this phase. Most importantly was also determining how this project
provides a value not only for us, but also Siemens and how this project aligns with the
ambitions of the Siemens Foundation and the Siemens’s industry goals.

Once the idea was established, the technical implementation next stage is followed. As
mentioned, Siemens is our customer and they are at the center of our focus. Their
requirements are to create a solar powered forest fire detection and monitoring system
that will also be used as STEM kit to educate the youth on electrical engineering concepts,
and also how the technology and implementation relates to the industry. Another crucial
requirement is heeding their budget requirement of approximately $500. Furthermore, the
university (UCF) is also our customer because they are expecting a senior design project
that fulfils the criteria set by Accreditation Board of Engineering and Technology. Lastly,
this product has potential to be used in the industry, therefore government of countries
experiencing forest fires as well as the authorities that protect reservations that are likely
to experience forest fires are our unheard audience; we are not able to interact with them
directly, however we have built our assumptions based on their experiences and the
technologies they have used for forest fire detection and past research.

By integrating these three audiences’ concerns, demands, and needs as well as our own
skills set and experience, we are able to identify a reasonably sound solution and initiate
the first prototype. The protype will be used to gather as much data possible; in this

144

project’s case once the sensors have been selected and are fully functional, the sensors
will begin accumulating temperature, humidity, pressure, gas concentration levels, smoke
and flame conditions. This historic data will be useful for mathematical and statistical
methods to determine an algorithm than assess various parameters and identify similar
patterns in the data set. Machine learning will be used to train the model and improve
prediction outcomes.

The third stage involved connecting, adapting, and integrating systems. The main
components in this process include the sensors, communication networks, cloud
infrastructure and IoT platforms and applications. In this process the data gathered from
the sensors can be sent to other devices and the main hub which will house all the
database. The communication protocol becomes vital as it determines range, latency,
data volume, and transmission frequency. The F.I.R.E system uses RF communication
from the LoRa module which accounts for each of these factors. The database has yet to
be established for this project however the two options will mostly like be either premise-
based or cloud-based. Communication is vital however it is also important that the data
from the various sources are in a uniform language in order for it to be processed to a
device or cloud. Once the machine learning algorithms are able to model and predict the
data, the outcome will be presented in a visually clear manner for the user to understand.

The fourth stage used in Siemens IoT implementation which will be followed in project
F.I.R.E is analyzing the data. As mentioned, the data needs to be easy to read and
understand so that appropriate action can be taken with the information provided. In this
stage it is important to differentiate between correlation and causality. Correlation is a
statistical measure to observe the relationship between two variables; the relationship
can be random without grounds for a direct cause. As a result, correlation can produce
noise in the data which can lead to less accurate predictions and outcomes. Causality is
a relationship that describes the cause-effect connection. Therefore, during this stage is
important to interpret the data logically to avoid misrepresentation and to continually train
the system to improve and optimize models to avoid false-positive outcomes of a fire.

The final stage is operation. Once the system is operating successfully, it will be important
to maintain it regularly to avoid malfunctions. With respect to the F.I.R.E project, this
device will be handed off to Siemens to use for future STEM events potentially
manufacture more STEM kits in the future. To ensure proper maintenance and use is
observed, a guide will be provided with the step-by-step procedure of operating the
system and testing it under various conditions. This guide will be a combination of written
material and video tutorials to ensure it can be properly understood and avoid vague
rhetoric. It will be targeted towards Siemens engineers who will be conducting the
activities and will be responsible for maintaining the system’s operational standards.

8.3.3.3. Siemens Gamesa: Wind Turbines

145

In 2016, Siemens announced it would merge it wind businesses with Gamesa with a 59%-
41% split between the two shareholders [56]. Siemens Gamesa is one of the leading
manufacturers and suppliers in the world for wind turbines. Siemens Gamesa have
installed wind turbine technology in over 90 countries with base capacities exceeding
99GW [56]. Siemens Gamesa’s businesses is primarily focused in onshore and offshore
wind turbines and service maintenance. They are situated globally and also have an office
in Orlando, FL.

Like gas turbines, wind turbines need to be maintained and protected to ensure optimal
performance. Gas turbines are more likely to catch fire because the nature of the fuel is
highly flammable [57]. With wind turbines, although it is not powered by a flammable
source, the wind turbine system still needs to be designed with a fire detection system

since it is designed with various mechanical and electrical components where a potential
malfunction could start a fire [57]. Most wind farms in isolated areas and the possibility of
a turbine being struck by lightning is also a concern. Earlier in February 2020 there was
a turbine rotor that caught fire in a wind farm in northeastern Brazil; the turbine was a
2MW G97 Siemens Gamesa turbine [58]. Similarly, a G80 2MW wind turbine caught fire
in Japan in 2017 [59]. The issue with fires in wind turbines is they become difficult to save
the turbine once it catches fire, especially if the source of the fire is in the nacelle as
shown in the figure [57]. Repair costs are very high and put technicians who must conduct
the offshore repairs at risk of injury or death [57]. Most wind turbines include fire-protection
products which include circuit breakers, semiconductor protection fuses, differential
current monitoring devices, measuring instrumented for power monitoring, residual-
current devices, and busbars [57]. Graduated protection is also an additional measure

Figure 81: Nacelle of a wind turbine where the AFFS is installed

146

taken to avoid turbine failures; this includes disconnecting defective systems from the grid
earlier on to avoid a fire from igniting [57].

In 2014, Siemens Building Technologies Division announced it developed automatic fire-
extinguishing system for off-shore turbines and the new system would be installed at
Riffgat project in the German North Sea [60]. The Active Fire Fighting System (AFFS)
works by detecting fires by reading sensor signals from the Advanced Signal Analysis
(ASA) fire detectors to alert the system of a fire in a nacelle or tower [60]. The system
then activates nitrogen gas to extinguish the fires, operating on principles of oxygen
displacement, using the Sinorix gas fire extinguishing system [60]. The turbine is shut
down until the fire is extinguished. An advantage to this system is that it does not produce
false alarms and low maintenance and resistant [60]. The added extinguishing feature
prevents the fire from spreading nearby and reduces the need for fire helicopters [57].
Moreover, the operators can remotely access the system and identify the source of the
fire from the control station which will allow turbines to resume activity as soon as
possible. For added safety two AFFS systems are installed in a turbine: in the nacelle and
in the tower, both operate independently in the event of a power failure or network outage.
Currently, the AFFS system is in operation in 30 wind turbines [60]. Siemens was
recognized as the first company to test and approve a fire detection and extinguishing
system for wind turbine equipment; it has been certified by VdS Schadenverhütung GmbH
and approved by Germanischer Lloyd [60].

Figure 82: ASA fire detectors by Siemens Figure 83:Sinorix fire extinguisher used by Siemens

Siemens AFFS fire detection and prevention system holds many similarities to our device.
The system uses a similar technique of installing sensors that read and process data of
the current conditions and an algorithm is then used to identify probably cases of a fire.
One distinguishing feature that the AFFS device has is that it is paired with an
extinguishing feature for swift prevention of the fire spreading [60]. This feature was a
potential feature we had also considered but it was ruled out on the basis that the

147

extinguishing gasses could harm the wildlife, animals, and the forest environment. Thus,
it was decided that extinguishing the fire was outside the scope of this project and could
perhaps be further researched using drones. However, this difference is mainly attributed
to the fact that the intended purpose of the AFFS system is for wind turbines that typically
located in remote areas. This simply establishes the importance of recognizing the
planned purpose of the product and how it is integrated during the design and prototyping
process.

8.4. Estimated Cost

The table below, Table 17, provides the estimated list of costs associated with the project.
A major target of the project is delivering a system that is cost effective while maintaining
product performance. Based on preliminary research and experience, an estimated cost
breakdown was prepared. The data included in the table is a rough cost estimate on all
items that were purchased to build the prototype. Initially, the supposed was supposed to
be composed of 3 to 4 devices that will communicate data with each other. However, due
to cost constraints and limited resources and equipment from the COVID-19 lockdown,
only one prototype could be built. Thus, the cost below illustrates the total cost of
designing and implementing one prototype.

The table acts as a guide to see the general cost for the system. Cost is determined by
the distributor price when purchasing a single item, not in bulk. As we progressed further
into the project, potential areas to cut cost became apparent through careful research,
design, and testing.

Table 17: Estimated Cost

Item Estimated Cost ($)

Solar Panel System 100

Sensors*

Gas sensors + Temperature + Humidity sensor 22

Flame sensor 41

Particle sensors (smoke detection) 16

Raspberry pi camera 10

Communication system (RF and controllers) 68

Electronics*

General components
(resistor, capacitors, inductors, connectors, jumper wires)

30

PCB manufacturing 75

148

Shipping costs 40

Backup parts 70

Total Cost** ≈ $472

149

Appendix A: Sponsor Branding Approval

150

Appendix B: References

[1] S. Ouni, Z. T. Ayoub and F. Kamoun, "Auto-organization approach with adaptive
frame periods for IEEE 802.15.4/zigbee forest fire detection system.," 16 Jan. 2019.
[Online]. Available: https://doi.org/10.1007/s11276-018-01936-x. [Accessed 30 Jan.
2020].

[2] M. Jurvélius, "FOREST FIRES AND INTERNATIONAL ACTION," 2003. [Online].
Available: http://www.fao.org/3/XII/0820-B3.htm. [Accessed 30 Jan. 2020].

[3] A. A. Alkhatib, "Forest Fire Monitoring," 20 Dec. 2017. [Online]. Available:
https://www.intechopen.com/books/forest-fire/forest-fire-monitoring. [Accessed 30
Jan. 2020].

[4] United Nations Enviroment Programme, "Governments, smart data and wildfires:
where are we at?," 3 Jan. 2020. [Online]. Available:
https://www.unenvironment.org/news-and-stories/story/governments-smart-data-
and-wildfires-where-are-we. [Accessed 30 Jan. 2020].

[5] ASQ, "House of Quality Tutorial - How to Fill Out a House of Quality | ASQ," 2020.
[Online]. Available: https://asq.org/quality-resources/house-of-quality.

[6] RoHS, "RoHS Guide," 2005. [Online]. Available: https://rohsguide.com/rohs-faq.htm.
[Accessed 4 Mar. 2020].

[7] IPC-2221, "Generic Standard on Printed Board Design," Feb. 1998. [Online].
Available: http://www.ipc.org/TOC/IPC-2221.pdf. [Accessed 5 March 2020].

[8] Electronic Code of Federal Regulations, "e-CFR," 28 May 1996. [Online]. Available:
https://www.ecfr.gov/cgi-bin/text-
idx?SID=7248d37fdd25d0947f5611197fd5c6c8&mc=true&node=se47.5.101_1113&
rgn=div8. [Accessed 17 March 2020].

[9] K. Nörthemann, J.-E. Bienge, J. Müller and W. Moritz, "Early forest fire detection
using low-energy hydrogen sensors," 1 Nov. 2013. [Online]. Available:
https://pdfs.semanticscholar.org/b807/d5144095c15f7805fd272cb71a8a023a9516.p
df. [Accessed 30 Jan. 2020].

[10] "Arduino fire alarm system using temperature and smoke sensor with Android
connectivity," Microelectronics Technologies, [Online]. Available:
https://www.projectsof8051.com/arduino-fire-alarm-system-using-temperature-and-
smoke-sensor-with-android-connectivity/. [Accessed 4 Mar. 2020].

[11] Bluetooth, "Understanding Bluetooth Range," 2020. [Online]. Available:
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/range/.
[Accessed 30 Jan. 2020].

[12] F. Leens, "An introduction to I2C and SPI protocols," Feb. 2009. [Online]. Available:
https://ieeexplore-ieee-org.ezproxy.net.ucf.edu/document/4762946. [Accessed 30
Jan. 2020].

[13] A. Gaur, A. Singh, A. Kumar, K. S. Kulkarni, S. Lala, K. Kapoor, V. Srivastava, A.
Kumar and S. C. Mukhopadhyay, "Fire Sensing Technologies: A Review," 1 May

151

2019. [Online]. Available: https://ieeexplore.ieee.org/document/8625538. [Accessed
19 Mar. 2020].

[14] J. Fonollosa, A. Solorzano and S. Marco, "Chemical Sensor Systems and
Associated Algorithms for Fire Detection: A Review," 2018. [Online]. Available:
https://www.mdpi.com/1424-8220/18/2/553. [Accessed 30 Jan. 2020].

[15] M. Y. J. D. Y. Z. Liqiang Wang, "Hybrid fire detection using hidden Markov model
and luminance map," Computers and Electrical Engineering, vol. 37, pp. 905-915,
2011.

[16] ScienceDirect, "Kevlar," [Online]. Available:
https://www.sciencedirect.com/topics/engineering/kevlar. [Accessed 1 April 2020].

[17] Jamestown Distributors, "Kevlar Cloth - Plain Weave," [Online]. Available:
https://www.jamestowndistributors.com/userportal/show_product.do?pid=4022.
[Accessed 18 March 2020].

[18] WallpaperAccess, "Carbon Fiber," [Online]. Available:
https://wallpaperaccess.com/carbon-fiber. [Accessed 18 March 2020].

[19] J. Tan, "How to Choose Battery for Your Emergency Lighting Wisely?," 29 Sept.
2019. [Online]. Available: www.sanforce-tech.com/how-to-choose-suitable-battery-
emergency-lighting-wisely/.

[20] F. Leng, C. M. Tan and M. Pecht, "Effect of Temperature on the Aging rate of Li Ion
Battery Operating above Room Temperature," 6 Aug 2015. [Online]. Available:
https://www.nature.com/articles/srep12967. [Accessed 16 April 2020].

[21] J. Donovan, "Selecting Antennas for Embedded Designs," Convergence Promotions
LLC, 08 11 2012. [Online]. Available: https://www.digikey.com/en/articles/selecting-
antennas-for-embedded-designs.

[22] A. Designer, "Embedded RF Design: Ceramic Chip Antennas vs. PCB Trace
Antennas," Altium Designer, 16 2 2018. [Online]. Available:
https://resources.altium.com/p/embedded-rf-design-ceramic-chip-antennas-vs-pcb-
trace-antennas.

[23] J. Redmon, "YOLO: Real-Time Object Detection," arXiv, 2018. [Online]. Available:
https://pjreddie.com/darknet/yolo/. [Accessed 27 Feb. 2020].

[24] A. Kathuria, "How to implement a YOLO (v3) object detector from scratch in
PyTorch: Part 1," PaperspaceBlog, 16 Apr. 2018. [Online]. Available:
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/.
[Accessed 27 Feb. 2020].

[25] M. Sandler, "MobileNet," 12 Nov. 2019. [Online]. Available:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/REA
DME.md. [Accessed 28 Feb. 2020].

[26] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R.
Pang, V. Vasudevan, Q. V. Le and H. Adam, "Searching for MobileNetV3," 6 May
2019. [Online]. Available: https://arxiv.org/abs/1905.02244. [Accessed 28 Feb.
2020].

[27] Keras, "Keras: The Python Deep Learning library," [Online]. Available:
https://keras.io/. [Accessed 29 Feb. 2020].

152

[28] PyTorch, "PyTorch: From Reasearch to Production," [Online]. Available:
https://pytorch.org/.

[29] n. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, M. Irving, Y. Jia, R.
Jozefowicz, L. Kaiser, M. Kudlur, J. Levenburg, D. Man, R. Monga, S. Moore, D.
Murry, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P.
Tucker, V. Vanhoucke, V. Vasudevan, F. Vi, O. Vinyals, P. Warden, M. Wattenburg,
M. Wicke, Y. Yu and X. Zheng, "TensorFlow," 2015. [Online]. Available:
https://www.tensorflow.org/lite.

[30] OpenCV, "Open Source Computer Vision," 18 April 2020. [Online]. Available:
https://docs.opencv.org/3.4/df/d6c/group__ximgproc__superpixel.html. [Accessed
18 April 2020].

[31] N. True, "Computer Vision Based Fire Detection," University of California, La Jolla,
CA.

[32] C. Yu, Z. Mei and X. Zhang, "A Real-time Video Fire Flame and Smoke Detection
Algorithm," 14 Aug. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877705813013222. [Accessed
28 Feb. 2020].

[33] "Optical Flow," [Online]. Available: https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_k
anade.html.

[34] A. J. Dunnings and T. P. Breckon, "EXPERIMENTALLY DEFINED
CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE VARIANTS FOR NON-
TEMPORAL REAL-TIME FIRE DETECTION," [Online]. Available:
https://breckon.org/toby/publications/papers/dunnings18fire.pdf. [Accessed 18 April
2020].

[35] A. Deshmukh, T. Breckon and A. Dunnings, "fire detection cnn," 19 Dec 2019.
[Online]. Available: https://github.com/tobybreckon/fire-detection-cnn. [Accessed 18
April 2020].

[36] A. Rosebrock, "Fire and smoke detection with Keras and Deep Learning," 18
November 2019. [Online]. Available:
https://www.pyimagesearch.com/2019/11/18/fire-and-smoke-detection-with-keras-
and-deep-learning/.

[37] M. R. M. F. R. Errynando Surya Sasmita, "Integrating Forest Fire Detection with
Wireless Sensor Network Based on Long Range Radio," in The 2018 International
Conference on Control, Electronics, Renewable Energy and Communications,
Bandung, 2018.

[38] Y. E. Aslan, I. Korpeoglu and Ö. Ulusoy, "A framework for use of wireless sensor
networks in forest fire detection and monitoring," Nov. 2012. [Online]. Available:
https://doi.org/10.1016/j.compenvurbsys.2012.03.002. [Accessed 30 Jan. 2020].

[39] S. Bouckaert, E. D. Poorter, P. D. Mil, I. Moerman and P. Demeester,
"Interconnecting Wireless Sensor and Wireless Mesh Networks: Challenges and
Strategies," 2009. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/5425861. [Accessed 30 Jan. 2020].

153

[40] IEEE, "Integrating Forest Fire Detection with Wireless Sensor Network Based on
Long Range Radio," 2018 International Conference on Control, Electronics,
Renewable Energy and Communications (ICCEREC), 2018. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8711991. [Accessed 30 Jan. 2020].

[41] M. Rouse, "internet of things (IoT)," TechTarget, 2 2020. [Online]. Available:
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT.

[42] Semtech, "AN1200.22 LRa Modulation Basics," Semtech, Camarillo, CA, 2015.

[43] S. Ghoslya, "LoRa: Symbol Generation," [Online]. Available:
https://www.sghoslya.com/p/lora-is-chirp-spread-spectrum.html.

[44] Bosch, "Low Power Gas, Pressure, Temperature and Humidity Sensor," [Online].
Available: https://cdn-shop.adafruit.com/product-files/3660/BME680.pdf. [Accessed
1 April 2020].

[45] PYREOS, "AN136 Application Note: Understanding pyroelectric infrared detectors,"
2020. [Online]. Available: https://pyreos.com/wp-content/uploads/2020/01/AN136-
Understanding-pyroelectric-infrared-detectors.pdf.

[46] PYREOS, "ezPyroTM SMD I2C Pyroelectric Infrared Sensor," 22 June 2018.
[Online]. Available: https://forum.pycom.io/assets/uploads/files/1585523830287-
sensor_datasheet-min-3.pdf. [Accessed 20 May 2020].

[47] A. Rosebrock, "How to (quickly) build a deep learning image dataset," 9 April 2018.
[Online]. Available: https://www.pyimagesearch.com/2018/04/09/how-to-quickly-
build-a-deep-learning-image-dataset/.

[48] J. M. LEE, "Fighting Fire with Fire: How Controlled Burns Keep Us Safe," 14
January 2020. [Online]. Available: https://www.ucf.edu/news/fighting-fire-with-fire/.
[Accessed 10 April 2020].

[49] Siemens STEM Day, "Siemens Stem Day," [Online]. Available:
http://www.siemensstemday.com/. [Accessed 18 April 2020].

[50] Siemens, "Siemens Gas Turbines," 2019. [Online]. Available:
https://assets.new.siemens.com/siemens/assets/api/uuid:10f4860b140b2456f05d32
629d8d758dc00bcc30/gas-turbines-siemens-interactive.pdf. [Accessed 18 April
2020].

[51] G. K. C. S. a. N. T. Nancy H Ulerich, "CONDITION BASED MONITORING OF GAS
TURBINE COMBUSTION COMPONENTS," Siemens Energy, Inc., Jenetek
Sensors, Inc., K Science, GP LLC., Orlando, Waltham, San Antonio, 2013.

[52] C. Isiadinso, "TEMPERATURE, PRESSURE, & SPEED SENSING SYSTEMS OF A
GAS TURBINE FIRST STAGE ROTOR BLADE," Sensor Systems, p. 2015, 24
November 2015.

[53] M. H. RAITHATHA, "SIEMENS-UV OPTICAL FLAME DETECTION," College of
Engineering University of California, Berkley, 2013.

[54] Siemens AG, "Siemens Assets," 2019. [Online]. Available:
https://assets.new.siemens.com/siemens/assets/api/uuid:d9283b58-4f74-4f05-a8fb-
0ccf0439ee82/version:1557162462/sgt-a05-service-solutions-2019.pdf. [Accessed
18 April 2020].

154

[55] Siemens, "Siemens IOT Assest," 1 April 2019. [Online]. Available:
https://assets.new.siemens.com/siemens/assets/api/uuid:131ac2f9-5e8b-4968-ba2f-
734eefccdb50/version:1556633115/turning-iot-into-reality-whitepaper-by-siemens-
iot-services-fina.pdf. [Accessed 18 April 2020].

[56] Siemens Gamesa, "Siemens Games Renewable Energy," [Online]. Available:
https://www.siemensgamesa.com/en-int/about-us. [Accessed 18 April 2020].

[57] M. Froese, "Fire prevention and protection for wind turbines offshore and on," 24
June 2016. [Online]. Available: https://www.windpowerengineering.com/fire-
prevention-protection-wind-turbines-offshore/. [Accessed 18 April 2020].

[58] A. Spatuzza, "Recharge News," 3 February 2020. [Online]. Available:
https://www.rechargenews.com/wind/siemens-gamesa-investigates-after-wind-
turbine-rotor-crash-in-brazil/2-1-749505. [Accessed 18 April 2020].

[59] M. Foster, "Gamesa turbine catches fire in Japan," 22 August 2017. [Online].
Available: https://www.windpowermonthly.com/article/1442624/gamesa-turbine-
catches-fire-japan. [Accessed 18 April 2020].

[60] K. Garus, "Siemens' fire detection and extinguishing system is certified," 23 July
2013. [Online]. Available: https://www.offshorewindindustry.com/news/siemens-fire-
detection-and-extinguishing. [Accessed 18 April 2020].

[61] D. Zima, "Lora Best Design Practices EMC Compliance," in Lora Workshop, UCF,
Orlando, 2020.

[62] T. X.-P. Zhao, S. Acherman and G. Wei, "Dust and Smoke Detection for Multi-
Channel Imagers," Oct. 2010. [Online]. Available:
https://www.researchgate.net/publication/47380702_Dust_and_Smoke_Detection_f
or_Multi-Channel_Imagers. [Accessed 19 March 2020].

[63] X. Xu, "Everitt's blog," github, 10 Aug. 2018. [Online]. Available:
https://everitt257.github.io/post/2018/08/10/object_detection.html. [Accessed 27
Feb. 2020].

[64] Z. A. S. Syed, "Frequency, Range and type of Wireless Communication," in NSA,
University of Oslo, 2016.

[65] S. S. Roy, "Real-Time Object Detection on Raspberry Pi Using OpenCV DNN," 23
Oct. 2018. [Online]. Available: https://heartbeat.fritz.ai/real-time-object-detection-on-
raspberry-pi-using-opencv-dnn-98827255fa60. [Accessed 28 Feb. 2020].

[66] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks," Cornell University, Ithica, New York,
2016.

[67] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," Cornell
University, Ithaca, New York, 2018.

[68] H. W. Ott, "Henry Ott Consultants," 14 Feb. 2001. [Online]. Available:
http://www.hottconsultants.com/techtips/freq-wavelength.html. [Accessed 8 March
2020].

[69] J. Noci, "Antenna Design Overview — Copter documentation," Ardupilot.org, 2020.
[Online]. Available: https://ardupilot.org/copter/docs/common-antenna-design.html.
[Accessed 10 March 2020].

155

[70] A. Mordvintsev and A. K., "OpenCV-Python Tutorials," 2013. [Online]. Available:
https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_k
anade.html. [Accessed 29 Feb. 2020].

[71] H. Friis, A Note on a Simple Transmission Formula, IRE Proc.: 254–256, 1946.

[72] L. E. Frenzel, "Welcome To Antennas 101," Electronic Design, 13 Aug. 2008.
[Online]. Available:
https://www.electronicdesign.com/technologies/passives/article/21769333/welcome-
to-antennas-101. [Accessed 12 March 2020].

[73] E. Edje, "Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi,"
19 Oct. 2019. [Online]. Available: https://github.com/EdjeElectronics/TensorFlow-
Object-Detection-on-the-Raspberry-Pi/blob/master/README.md. [Accessed 28
Feb. 2020].

[74] W. De-Chang, X. Cui, E. Park and C. Jin, "Adaptive flame detection using
randomness testing and robust features," Oct. 2013. [Online]. Available:
https://www.researchgate.net/publication/257410367_Adaptive_flame_detection_usi
ng_randomness_testing_and_robust_features. [Accessed 19 Mar. 2020].

[75] RF Wireless World, "Smoke Detector basics | Smoke Detector types," [Online].
Available: https://www.rfwireless-world.com/Articles/smoke-detector-basics-and-
smoke-detector-types.html. [Accessed 19 Mar. 2020].

[76] IEEE Std 145-1993(R2004), IEEE Standard Definitions of Terms for Antennas., New
York, NY: The Institute of Electrical and Electronics Engineers, 1993.

[77] Legal Information Institute, "47 CFR § 15.209 - Radiated emission limits; general
requirements.," 2020. [Online]. Available:
https://www.law.cornell.edu/cfr/text/47/15.209. [Accessed 10 March 2020].

[78] "This Plastic’s on Fire! 4 Types of Flame Retardant Plastic Additives," Craftech
Industries, [Online]. Available: https://www.craftechind.com/this-plastics-on-fire-4-
types-of-flame-retardant-plastic-additives/. [Accessed 1 April 2020].

[79] P. Smith, "Siemens develops automatic offshore fire-fighting system," 17 February
2014. [Online]. Available:
https://www.windpowermonthly.com/article/1281184/siemens-develops-automatic-
offshore-fire-fighting-system. [Accessed 18 April 2020].

[80] Melexis, "MLX90640 32x24 IR array," 2012. [Online]. Available:
https://www.melexis.com/en/documents/documentation/datasheets/datasheet-
mlx90640. [Accessed 1 April 2020].

